
BullsEye: High-Precision Fiducial Tracking for Table-based
Tangible Interaction

Clemens Nylandsted Klokmose1,2 Janus Bager Kristensen3 Rolf Bagge3 Kim Halskov2,3

clemens@cs.au.dk jbk@cavi.au.dk rolf@cavi.au.dk halskov@cavi.au.dk

1Department of Computer Science, Aarhus University, DK-8200 Aarhus N, Denmark
2Center for Participatory IT, Aarhus University, DK-8200 Aarhus N, Denmark

3Center for Advanced Visualization and Interaction, Aarhus University, DK-8200 Aarhus N, Denmark

ABSTRACT
This paper proposes a series of techniques for improving the
precision of optical fiducial tracking on tangible tabletops.
The motivation is to enable convincing interactive projection
mapping on tangibles on the table, which requires a high pre-
cision tracking of the location of tangibles. We propose a new
fiducial design optimized for GPU based tracking, a tech-
nique for calibrating light that allows for computation on a
greyscale image rather than a binarized black and white im-
age, an automated technique for compensating for optical dis-
tortions in the camera lenses, and a tracking algorithm im-
plemented primarily in shaders on the GPU. The techniques
are realized in the BullsEye computer vision software. We
demonstrate experimentally that BullsEye provides sub-pixel
accuracy down to a tenth of a pixel, which is a significant
improvement compared to the commonly used reacTIVision
software.

Author Keywords
Fiducial tracking; Computer vision; Tangible tabletops;
Tangible computing

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Over the last decade tabletop computing has gained signifi-
cant interest in both academia and the industry. A popular
technique for implementing tracking on an interactive table is
to use computer vision, either by having one or more cameras
mounted beneath a semi transparent surface, or by integrating
optical sensors in a display surface1. Such optical tracking
not only enables finger-based interaction, but also tracking
of physical objects on the table, so-called tangibles. This is

1A technology used in Microsoft’s PixelSense http://www.
microsoft.com/en-us/pixelsense

This is the authors version of the work. For personal use only. Not for redistribution.
The definite version of this paper is published at:
ITS 2014, November 16–19, 2014, Dresden, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2587-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2669485.2669503

Figure 1: Interactive projection mapping on tangibles on an
interactive tabletop.

typically done by detecting shapes or unique fiducial markers
attached to the bottom of the tangibles.

A novel extension of tangible tabletops is to use interactive
projection mapping on tangibles on the table [4], hereafter
referred to as tangible 3D tabletops. This technique creates
the illusion that the tangibles are display surfaces themselves
(Figure 1). Although, in order to create and maintain a con-
vincing illusion, the tracking of fiducials on the table must be
extremely accurate.

ReacTIVision is one of the few freely available computer vi-
sion frameworks particularly designed for tabletop fiducial
tracking[11]2. To build custom tangible 3D tabletops, re-
acTIVision is currently the best candidate for fiducial track-
ing. However, we have found that the tracking technique ap-
plied in reacTIVision is too inaccurate for interactive projec-
tion mapping. Commercial alternatives to reacTIVision exist,
such as Microsoft’s PixelSense API or MultiTaction by Multi-
Touch Ltd but these frameworks are closed source and tightly
coupled to specific hardware platforms.

In this paper we will present a computer vision framework,
BullsEye3, with a set of novel techniques for fiducial tracking
to provide an accuracy high enough to convincingly enable
interactive projection mapping on a tangible tabletop. While
BullsEye is designed to enable tangible 3D tabletops it is also
a framework for general tabletop fiducial tracking. Therefore,
the presented improvements of fiducial tracking will benefit a
regular tangible tabletop application based on optical tracking

2The fiducial tracking library libfidtrack from reacTIVision is also
used in other frameworks such as in the Community Core Vision
framework (http://ccv.nuigroup.com)
3BullsEye is available for download at http://cavi.au.dk/
bullseye.

http://www.microsoft.com/en-us/pixelsense
http://www.microsoft.com/en-us/pixelsense
http://dx.doi.org/10.1145/2669485.2669503
http://ccv.nuigroup.com
http://cavi.au.dk/bullseye
http://cavi.au.dk/bullseye

Figure 2: The main components of the tangible 3D tabletop.
1) Bottom mounted projector for the surface of the table. 2)
Camera for tracking fingers and objects on the table. 3) Ob-
jects on which the projection mapping is performed. The ob-
jects are equipped with fiducials and tracked by the bottom
mounted camera. 4-5) One or more top-mounted projectors
for the projection mapping.

as well. The core advantage of BullsEye compared to reac-
TIVision is that BullsEye offers subpixel precision down to
an average of one tenth of a pixel compared to the around one
pixel precision we measure from reacTIVision. BullsEye fur-
thermore facilitates significantly more precise and automated
compensation for optical distortions in the optics of cameras.
BullsEye does feature finger tracking, but in this paper we
solely focus on the improved fiducial tracking to accommo-
date the precision required for interactive projection mapping.

In the next section we will present the requirements that
spawned the need for a new tracking framework, followed
by an overview of the central ideas employed in BullsEye
and how they differ from those of reacTIVision. We will then
present details on the implementation of BullsEye followed
by an evaluation of its performance and compare it to reac-
TIVision.

Requirements
Interactive projection mapping on a tangible tabletop involves
synchronizing fiducial tracking on the table with the render-
ing of a 3D scene displayed by one or more top-mounted pro-
jectors together with the image from the table projector or
display (see Figure 2). To do this a virtual representation of
an object must be mapped to the location and rotation of a
physical object in real time. In figure 1 tangibles are used to
navigate statistical data on a map by projecting the data re-
lating to the position of the cubes on the map onto the cubes
themselves.

In initial prototypes of tangible 3D tabletops we used reac-
TIVision for fiducial tracking. We experienced that the track-
ing accuracy was not high enough for this purpose. We have
measured the error of reacTIVision to be between 0.5 and
1.5 pixels when detecting the position of a fiducial on a ta-
ble with a 1280x1024 pixels camera input (See Experimen-

Figure 3: On a tangible similar in shape and size to a checker
piece (top), a perfect projection of a green color is shown bot-
tom left, bottom right shows how the projection with a worst
case 1 pixel horizontal and vertical offset on a 100 cm long
and 80 cm wide table and a camera with a resolution of 1280
by 1024 pixels. Bottom middle shows the worst case offset
with the 1/10 pixel precision. On printed paper the offsets
should approximately match what would be experienced on a
physical table.

tal Evaluation). A one pixel error with a 1280x1024 camera
input results in a metric precision of 0.78 mm when project-
ing on a 100 by 80 centimeter surface. This may seem as
a high accuracy, and it is adequate for most tangible table-
top applications, but for the purpose of projection mapping
the inaccuracy is easily discernible (as illustrated in figure
3). With BullsEye we aim for improving accuracy, and we
demonstrate that a tenth of a pixel is a realistic aim. A tenth
of a pixel offset is still discernible with the naked eye (as seen
in figure 3 bottom middle) but a significant improvement over
reacTIVision’s accuracy.

Optical distortion in the lens of the camera used for tracking
can result in the tracked position being offset from the actual
physical position of the object. The offset may differ across
the area of the table. In order to provide a uniform precision
across the surface of the table, any optical distortion must be
compensated for through a calibration. To align the tracking
and compensate for optical distortions reacTIVision applies a
technique where a set of grid points are manually aligned to a
calibration grid that is printed and placed on the table (Figure
6). Our experience is that the process of manually aligning the
grid is laborious and error prone, and even if the alignment is
done extremely meticulously the compensation is too coarse.
With BullsEye we aim to automate this calibration, and make
sure the distortion compensation is even across the surface of
the tangible tabletop.

It is essential that the latency between the physical movement
of a tangible and the update of the position of the projected
virtual representation is kept as low as possible. Therefore,
a requirement for any fiducial tracking software is that the
tracking must be achieved within the time between frames
coming from the camera.

With BullsEye we also want to support multiple cameras,
which can enable us to construct large interactive table-tops
(inspired by [18]), and we want to support multiple different
types of cameras including PixelSense based cameras.

FIDUCIAL TRACKING IN BULLSEYE
In this section we present three central techniques applied
in BullsEye: A fiducial design optimized for GPU track-
ing, an improved calibration of light to enable computation
on grayscale values for increased precision, and an improved
technique for compensating for optical distortions. The tech-
niques will be compared to those of reacTIVision. At the end
of the section we will go through the details of the shader
steps involved in BullsEye’s fiducial tracking algorithm.

Fiducial design
The tracking algorithm in BullsEye is primarily implemented
in shaders on the GPU in contrast to reacTIVision’s tradi-
tional CPU-based algorithm. A GPU implementation has
some significant performance benefits compared to a CPU
implementation as tracking can be parallelized if the fiducial
design allows for it.

Tracking a fiducial involves three basic steps:

1. Find the center coordinates

2. Find the rotation angle

3. Extract the unique identifier

The reacTIVision tracking algorithm [2] is based on a topo-
logical fiducial recognition approach adopted and improved
from d-touch [3]. The center of a reacTIVision fiducial (fig-
ure 4 right) is computed by the average centroid of black and
white leafs in the topology of the fiducial (i.e. by the centroids
of the fully black and fully white dots). The rotation is com-
puted as a vector from the center of the fiducial to the average
centroid of the black leafs. The unique identifier of a fiducial
is extracted by constructing a region adjacency graph from
the fiducial and computing a depth sequence string which
uniquely identifies the fiducial. In other words; reacTIVision
creates a tree-like structure representing how black regions
contains white and vice versa, which can be serialized to a
unique identifier (find more details in [2]). The reacTIVision
fiducial tracking algorithm could possibly be implemented on
the GPU; however, we decided to opt for a simpler fiducial
design particularly designed for GPU based tracking.

The BullsEye fiducials (figure 4 left) are designed so that the
three tracking steps can be easily implemented with shaders
executed on the GPU. A BullsEye fiducial consists of a cen-
tral white dot surrounded by a solid black ring and one or
more data rings again surrounded by a solid white ring inside
a black ring with three white studs. The data rings encode the
fiducial id in binary form (white is 1 and black is 0). Figure 4
(left) has a seven bit data ring with the id 0100001 in binary
or 66 in decimal. In the outer black ring there is a stud point-
ing up right, and two pointing down left. The studs indicate
the rotation of the fiducial and should visually be interpreted
as an arrow passing through the fiducial showing the orienta-
tion. Hence, both orientation and id are fairly easily human

Figure 4: A BullsEye fiducial (left) and a reacTIVision fidu-
cial (right) (reprinted with permission)

readable. A ring-based shape was chosen as rings—given a
center, radius and ring width—are easily identifiable on the
GPU with relatively few texture lookups. This is advanta-
geous since texture lookups are expensive operations. Bulls-
Eye fiducials are initially found by searching for white dots
surrounded by a white ring with a fixed width at a fixed ra-
dius. By computing the center of the fiducial, the rotation can
be computed by sampling for the position of the three white
studs. Finally by knowing the rotation, the id can be read
from the data rings in the fiducial.

Grayscale representation
One of the initial steps of the reacTIVision tracking algorithm
is to perform binary thresholding on a grayscale version of the
input image; given a threshold a grayscale pixel is either made
black or white. We want to avoid binarization as it effectively
means throwing away information and hereby loosing accu-
racy (as illustrated in figure 5).

To compute the center of the grayscale represented rectangle
in figure 5(b), one can use a average of the center positions of
the pixels weighted by their greyscale values, which in per-
fect conditions would give an accuracy proportional to the bit
depth of the greyscale image. In the less than ideal condi-
tions that we have when tracking fiducials on a real table, the
grayscale image that we get from the camera image is noisy
and influenced by background light and reflections. Noise
resulting in a variation at a pixel of only a few grayscale val-
ues can through binarization result in a pixel changing from
black to white; hereby offsetting the tracked center of a fidu-
cial quite significantly. When computing the center from a
weighted average of grayscale values, the same noise of a
few grayscale values at a pixel will only have a minimal effect
on the tracking. However, different lighting condition across
the table can result in an erroneous position when based on
a weighted average: If a fiducial is partially in a brighter lit
area of a table, the position may be slightly offset towards the
brighter lit area.

Similar to reacTIVision, BullsEye compensates for variations
in lighting conditions across the table. ReacTIVision uses a
snapshot of the background light on an empty table to com-
pute a binarization threshold of the image segmented into 32
by 32 pixel tiles. In BullsEye we normalize the greyscale
spectrum per pixel through calibration of light. The cali-
bration involves continuously storing the brightest white and
darkest black seen at a pixel in a texture and subsequently us-
ing that texture as input to a normalization of the grayscale
values of the camera image during tracking. The darkest

(a) (b)

Figure 5: Top: The dotted rectangle illustrates how a physical
rectangle on a table corresponds to the pixels of the camera
image (the background grid). Center: Grayscale representa-
tion of the camera input. Bottom: Binary representation of
the camera image. The rectangle has moved approx. a fifth
of a pixel from a to b. Notice how the binary representation
stays the same from a to b.

black is provided by an empty table, while the brightest white
can be provided by moving a white object across the whole
area of the table. The grayscale calibration texture for a table
with two cameras can be seen in figure 9.

The result is that in BullsEye we can rely on computing
weighted averages, hence achieving sub-pixel precision with
a high noise tolerance.

Compensation for optical distortion
Similar to reacTIVision, BullsEye uses a printed calibration
grid as input to the geometry calibration, but the alignment
to the grid is automated rather than manual. The BullsEye
calibration grid (Figure 7) consists of black dots in a uniform
grid on a white background. By tracking the location of the
black dots in the uniform grid on the printed sheet a position
mapping texture can be produced that subsequently is used to
correct the image from the camera.

The position mapping texture is computed in four steps im-
plemented as a CPU algorithm: In the first step the user is
prompted to click on a part of the input image showing the
grid. We now perform a calibration of light where we search
for the darkest and lightest spots on the image in a prede-
fined area surrounding the user’s click. This calibration is

Figure 6: reacTIVision’s geometry calibration grid

Figure 7: BullsEye’s geometry calibration grid

used to compute a binarization threshold of the image to dis-
tinguish dots from the white background. In the second step
we perform a blob extraction to track all the black dots on the
printed grid. We apply a blob extraction algorithm inspired
by connected-component labeling [6]. In step three we iter-
ate through all the extracted blobs and for each blob we search
for its immediate neighbor blobs to the left, right, top and bot-
tom. We can now store the average distance between blobs
and produce a data structure representing a uniform virtual
grid of dots, where each dot stores its corresponding position
in the original image. This grid may not cover the whole in-
put image, or there may be holes in the grid. To compensate
for this, the user can choose to automatically expand the grid.
Through interpolating between the positions of neighboring
blobs in the virtual grid we in step four generate a mapping
texture. For each pixel corresponding to a pixel in a distor-
tion corrected image, the mapping texture stores the position
of where the pixel value should be looked up in the original
camera input. The distortion corrected image can be com-
bined from multiple camera inputs, hence the origin of the
virtual grid is user configurable. The mapping texture is used
as input to the shaders in the rendering pipeline as described
below.

Tracking implementation
BullsEye does realtime image processing using shaders on
the GPU to manipulate images in realtime. The core of the
tracking algorithm in BullsEye is implemented as subsequent
shaders in a rendering pipeline. BullsEye is implemented in
Java and the OpenGL Shader Language [16].

Pixel shaders are pieces of code executed per pixel on an out-
put texture. For each pixel the shader can sample in one or
more input textures to produce the output color of the pixel.

Figure 8 illustrates the shader steps involved in the render-
ing pipeline of BullsEye. The input texture to the first shader

Figure 8: BullsEye’s shader steps

Normalize Grayscale is the image from the camera converted
to grayscale and the texture representing the grayscale cali-
bration. Each pixel is normalized given the maximum and
minimum light levels recorded in the calibration. Shader 2
combines the normalized images from one or more cameras
into a combined image based on the per-camera distortion
correction mapping texture which contains information about
where a given pixel from the source image should be mapped
to in the combined image. When combining camera inputs,
overlap is handled by only using the input from one of the
cameras in the overlapping area. The actual textures involved
in the first two shader steps in a setup with a large table with
two cameras is shown in figure 9.

To locate a BullsEye fiducial, shader 3 outputs the likelihood
that a pixel contains the center of a fiducial. This is done
by sampling at known distances in a circle around the given
pixel and computing a color difference between what should
be black and what should be white if the pixel contained the
fiducial center; if we assume a pixel is the centre, we know
the distance to the rings comprising the BullsEye fiducial and
can compute and average difference between what should be
black and what should be white. Listing 1 shows pseudocode
for the BullsEye implementation of shader step 3. The output
of this shader is a texture where the red color intensity repre-
sents the likelihood of the pixel being the center of a fiducial.
The pixel with the highest red color intensity is assumed to
contain the center of the fiducial. An input as shown in figure
10 (left) will produce an output as shown in figure 10 (right).
The blue component represents the accumulated color differ-
ence in the outer white ring and inner black ring, and is used
to filter off false positives.

Listing 1: Pseudo-code for locating fiducials (shader 3). In-
put: Combined and normalized image (combinedTexture)
and the current texture coordinates (textureCoords). The
constant RADIUS is the radius to the outer edge of the outer
white ring which is given through user configuration, and the
constant RING WIDTH is the width of a ring. Output:
Likelihood of pixels containing the center of a fiducial
t e x C o l o r = combinedTex tu re . c o l o r A t (t e x t u r e C o o r d s)

i f t e x C o l o r . r e d < THRESHOLD:
re turn BLACK

e l s e :
o u t s i d e S a m p l e R a d i u s = RADIUS + RING WIDTH / 2
o u t e r S a m p l e R i n g R a d i u s = RADIUS − RING WIDTH / 2
i n n e r S a m p l e R i n g R a d i u s = RING WIDTH

t o t a l C o l o r = t o t a l C e n t e r D i f f e r e n c e = 0
p r e v i o u s C e n t e r C o l o r = combinedTex tu re . c o l o r A t (

t e x t u r e C o o r d s + i n n e r S a m p l e R i n g R a d i u s) . r e d
p r e v i o u s O u t s i d e C o l o r = combinedTex tu re . c o l o r A t (

t e x t u r e C o o r d s + RADIUS ∗ RING WIDTH ∗ 1 . 5) . r e d

f o r i = 0 ; i <32; i ++:
r a d i a n s = i ∗ (2 . 0 ∗ PI) / 3 2 ;
d i r V e c t o r = (cos (r a d i a n s) ∗ (1 / combinedTex tu re . s i z e .

x) , s i n (r a d i a n s) ∗ (1 / combinedTex tu re . s i z e . y))

o u t s i d e = t e x t u r e C o o r d s + o u t s i d e S a m p l e R a d i u s ∗
d i r V e c t o r

o u t e r R i n g = t e x t u r e C o o r d s + o u t e r S a m p l e R i n g R a d i u s ∗
d i r V e c t o r

i n n e r R i n g = t e x t u r e C o o r d s + i n n e r S a m p l e R i n g R a d i u s ∗
d i r V e c t o r

o u t S i d e C o l o r = combinedTex tu re . c o l o r A t (o u t s i d e) . r e d
o u t e r m o s t C o l o r = combinedTex tu re . c o l o r A t (o u t e r R i n g) .

r e d
i n n e r m o s t C o l o r = combinedTex tu re . c o l o r A t (i n n e r R i n g) .

r e d

t o t a l C o l o r += min (o u t e r m o s t C o l o r − o u t s i d e C o l o r ,
t e x C o l o r . r e d − i n n e r m o s t C o l o r)

t o t a l C e n t e r D i f f e r e n c e += abs (i n n e r m o s t C o l o r −
p r e v i o u s C e n t e r C o l o r) +abs (o u t s i d e C o l o r−
p r e v i o u s O u t s i d e C o l o r)

p r e v i o u s C e n t e r C o l o r = i n n e r m o s t C o l o r
p r e v i o u s O u t s i d e C o l o r = o u t s i d e C o l o r

t o t a l C o l o r /= 32
t o t a l C e n t e r D i f f e r e n c e /= 32

re turn (max (t o t a l C o l o r , 0) , 0 , t o t a l C e n t e r D i f f e r e n c e)

Shader 4 samples the center likelihood texture produced by
shader 3 in an area around the given pixel coordinates and
computes an average center position weighted by the likeli-
hood value of the sampled pixels. If a sampled pixel has a
higher center likelihood than the pixel at the given coordi-
nates in the likelihood texture, the output pixel at those coor-
dinates will be black. This way the output texture will con-
tain only one pixel with color per tracked fiducial, where the
color represents the center position of the fiducial4. Listing 2
shows the pseudocode for shader 4. The result of shader 4 is
a primarily black texture. In the example of figure 9 shader 4
would produce a very large texture with just 8 pixels actually
containing relevant information.

4In the unlikely situation that two pixels have the exact same floating
point likelihood value, a filtering ensuring that no fiducials overlap
will be applied on the CPU at a later stage.

Listing 2: Shader 4 pseudo-code. Input: Center likelihood
texture (likelihoodTexture) and the current texture coordi-
nates (textureCoords). Output: a texture with centers of
fiducials in sub-pixel precision.
t e x C o l o r = l i k e l i h o o d T e x t u r e . c o l o r A t (t e x t u r e C o o r d s)

c i r c l e L i k e l i n e s s = t e x C o l o r . r e d
e d g e D i f f = t e x C o l o r . b l u e

i f c i r c l e L i k e l i n e s s <= CIRCLE LIKELINESS THRESHOLD | |
e d g e D i f f >= FALSE POSITIVE FILTER THRESHOLD :

re turn BLACK
e l s e

p i x e l S i z e = 1 / l i k e l i h o o d T e x t u r e . s i z e
p o s i t i o n = vec2D (0 . 0 , 0 . 0)
t o t a l S u m = 0

f o r y = −SEARCH AREA ; y <= SEARCH AREA ; y ++:
f o r x = −SEARCH AREA ; x <= SEARCH AREA ; x++

sampleCoord = t e x t u r e C o o r d + vec2D (x , y) ∗
p i x e l S i z e

sampleCo lo r = max (0 , l i k e l i h o o d T e x t u r e . c o l o r A t (
sampleCoord) . r e d)

i f samp leCo lo r > c i r c l e L i k e l i n e s s :
re turn BLACK

p o s i t i o n += s a m p l e P o s i t i o n ∗ samp leCo lo r
t o t a l S u m += sampleCo lo r

p o s i t i o n /= t o t a l S u m
t o t a l S u m /= pow (2 . 0 ∗ SEARCH AREA + 1 . 0 , 2 . 0)

re turn (p o s i t i o n . x , p o s i t i o n . y , t o t a l S u m) ;

As an optimization we apply a geometry shader in shader step
5 to compress the full sized texture produced by shader 4. The
compressed output texture contains a block representation of
the whole surface. Each row of pixels in the output texture
represents a block of 64x64 pixels of the input texture and
stores the position of up to eight fiducial centers contained in
the block. Color values represent the coordinates of the fidu-
cial centers. Therefore, for an input texture of 1024x768 pix-
els, the compressed texture will be 192x8 pixels, hence mak-
ing the subsequent shader steps significantly faster. The max-
imum of eight centers per block is set to reflect the physical
limitations of how many fiducials that can be placed within
the area corresponding to 64x64 pixels in the camera image.

Given the centers from shader 5, the rotations are found by
sampling the the block representation of the centers and the
combined image from shader 2. The output of shader 6 is a
block representation like that of shader 5 but containing ori-
entations. This shader step is the most computationally inten-
sive step, but the computations are only performed on pixels
representing a fiducial. To compute the orientation a coarse
estimate is found by iterating a full circle in 256 steps, and
for each iteration computing a likelihood score for the given
angle being the approximate orientation of the fiducial. The
likelihood score is computed as the difference between the
color where the white studs should be and the outer black
ring. Given the coarse estimate a precise orientation is com-
puted by iterating 20 degrees around the coarse estimate in
100 steps and computing an average weighted by the orienta-
tion likelihood at each step. Listing 3 shows the pseudocode

Figure 9: BullsEye’s initial image processing

Figure 10: BullsEye’s circletracking

for this shader step. The rotation could in principle be com-
puted from a single stud, however, we opted for the fiducial
design with multiple studs to increase accuracy and noise tol-
erance.

The final shader 7 can use the centers, rotations and the com-
bined image to find the id of a fiducial and output a texture
encoding positions, rotation and ids of fiducials.

The resulting texture is extracted to the CPU, where it is
parsed and filtering and stabilization is performed. Finally
the tracking data is translated to TUIO events [12] and emit-
ted to a given application hostname and port.

BullsEye User Interface
BullsEye features a user interface that enables real-time
tweaking of the parameters of the tracking (Figure 11). Fur-
thermore the user interface allows for easy calibration of both
light and geometry. Input from multiple cameras can be com-

Listing 3: Shader 7 pseudo-code. Input: Extracted centers
and combined, normalized image. Output: Rotations of fidu-
cials in sub-pixel precision.
c e n t e r = t e x t u r e . c o l o r A t (t e x t u r e C o o r d s)

f u n c t i o n g e t O r i e n t a t i o n L i k e l i n e s s (r a d i a n s , c e n t e r) :
/∗ Sample c o l o r in combined t e x t u r e a t f r o n t s tud ,

b e s i d e s f r o n t s tud , a t t h e two back s t u d s and
between t h e back s t u d s r e l a t i v e t o g i v e n r a d i a n s
and c e n t e r ∗ /

re turn min (f r o n t S t u d C o l o r − b e s i d e s F r o n t S t u d C o l o r , (
b a c k S t u d 1 C o l o r + b a c k S t u d 2 C o l o r) / 2 . 0 −
be tweenBackS tudsCo lo r)

/ / Get a c o u r s e o r i e n t a t i o n e s t i m a t e
m a x L i k e l i n e s s = 0
b e s t R o t a t i o n = 0
f o r i n t i = 0 ; i <256; i ++:

r a d i a n s = i ∗ (2 . 0 ∗ PI) / 256
l i k e l i n e s s = g e t O r i e n t a t i o n L i k e l i n e s s (r a d i a n s , c e n t e r)

i f c u r r e n t V a l u e > maxValue :
m a x L i k e l i n e s s = l i k e l i n e s s
b e s t R o t a t i o n = r o t a t i o n

/ / F ind p r e c i s e o r i e n t a t i o n
s t a r t R a d i a n s = b e s t R o t a t i o n − 10 ∗ (1 8 0 / PI)
endRad ians = b e s t R o t a t i o n + 10 ∗ (1 8 0 / PI)

f o r f l o a t r = s t a r t R a d i a n s ; r < endRad ians ; r += (2 . 0 ∗ PI)
/ 1 00 :

l i k e l i n e s s = g e t O r i e n t a t i o n L i k e l i n e s s (r , c e n t e r)
r o t a t i o n W e i g h t e d S u m += r ∗ l i k e l i n e s s
t o t a l L i k e l i n e s s += l i k e l i n e s s

w e i g h t e d R o t a t i o n A v e r a g e = r o t a t i o n W e i g h t e d S u m /
t o t a l L i k e l i n e s s

re turn (w e i g h t e d R o t a t i o n A v e r a g e , 0 , 0)

bined and their placement in relation to each other can be
configured visually.

Limitations
BullsEye requires that the tag size is known, and it only oper-
ates with a single tag size at a time. ReacTIVision is agnostic
towards tag size because of its topological fiducial recogni-
tion algorithm. It is possible to extend the BullsEye algo-
rithm with support for multiple tag sizes. This would require
the different supported tag sizes to be specified through con-
figuration. Multiple tag sizes would have a drawback on per-
formance since each tracking step using the tag size as input
would have to be repeated per different tag size.

BullsEye employs a geometry shader for one of the shader
steps, and only graphics cards supporting Open GL 3.2 or
newer has support for geometry shaders. This leaves out run-
ning BullsEye on a credit-card computer such as the Rasp-
berry Pi, but it will run on most popular integrated graphics
cards such as the Intel HD Graphics series5.

EXPERIMENTAL EVALUATION
In order to provide a ground truth for the positions and ro-
tations of fiducials, we simulated a camera input where we
5http://www.intel.com/support/graphics/sb/
CS-033757.htm

Figure 11: The user interface for BullsEye showing configu-
ration options for fiducial tracking.

Figure 12: Snapshot from simulated camera input for Bulls-
Eye.

could control the position of a fiducial. In order to compare
the precision of BullsEye with reacTIVision we generated
videos for both types of fiducials. Figure 12 shows a snap-
shot of the video with a BullsEye fiducial. These videos were
fed to reacTIVision and BullsEye as were they input from a
camera.

The videos were generated using Blender6. In Blender we
modeled a 3D scene consisting of a camera placed below a
flat surface together with two light sources. On the flat surface
we placed a rectangle with a fiducial texture, and animated
the fiducial diagonally across the table on a known path with
a fixed rotation. The animation consisted of 600 frames over
a period of 30 seconds (20 frames per second). The videos
were generated with a resolution of 1280x1024 pixels.

We furthermore generated a video where the fiducial was
shrunk over time, to provide data on how small a fiducial
BullsEye and reacTIVision are capable of tracking7.

To simulate an image from a real camera we added random
noise and warped the geometry based on a lens profile from a

6http://www.blender.org
7For BullsEye we manually reconfigured the size of fiducials per
frame.

http://www.intel.com/support/graphics/sb/CS-033757.htm
http://www.intel.com/support/graphics/sb/CS-033757.htm
http://www.blender.org

Attribute Mean Standard deviation Maximum

X 0.37px 0.3px 1.28px
Y 1.35px 0.76px 2.9px

Rotation 0.54◦ 0.31◦ 1.32◦

Table 1: reacTIVision Absolute Error

Attribute Mean Standard deviation Maximum

X 0.08px 0.06px 0.29px
Y 0.07px 0.05px 0.27px

Rotation 0.12◦ 0.09◦ 0.48◦

Table 2: BullsEye Absolute Error

real camera8. When rendering the video from the 3D scene,
the output was anti-aliased using a Mitchell-Netravali [14]
filter.

To calibrate reacTIVision we used a simulated video input
showing the reacTIVision calibration grid. The calibration of
reacTIVision was done manually with our best possible ef-
forts. To calibrate BullsEye we similarly used a simulated
video input showing the BullsEye calibration grid, and let
BullsEye calibrate automatically. The black calibration was
performed with a simulated video showing an empty table,
and for the white calibration a pure white rectangle was in-
serted on top of the table in the 3D scene.

In order to provide a fair comparison between the tracking of
reacTIVision and BullsEye, we disabled a post-tracking sta-
bilization step in the reacTIVision code that would filter out
sub-pixel changes to a tracked fiducial position and rotation
changes below three degrees.

Results
Figures 14, 13, and 15 show the error rates of reacTIVision
and BullsEye for X-coordinates in pixels, Y-coordinates in
pixels and rotation in degrees, respectively.

Table 1 shows statistics for the absolute error rates of reac-
TIVision, while table 2 show the statistics for BullsEye.

We see that BullsEye on average provides subpixel precision
down to below a tenth of a pixel, and the maximum error rate
measured were below a third of a pixel. The error rate of
rotation is down to around a tenth of a degree in average with
a maximum of half a degree.

Compared to reacTIVision, BullsEye is significantly more ac-
curate with a 5 times more accurate average X-coordinate
tracking, a 20 times more accurate average Y-coordinate
tracking, and on average 4.5 times more accurate rotation
tracking. Furthermore, the standard deviations in the error
rates of BullsEye are significantly lower than those of reac-
TIVision.

8We used the lens profile from a Sony E-mount 18-200mm f/3.5-6.3
zoom lens.

0 10000 20000 30000
-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

reacTIVision BullsEye

time in ms

pi
xe

ls

Figure 13: X-Coordinate error

0 10000 20000 30000
-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

reacTIVision BullsEye

time in ms

pi
xe

ls

Figure 14: Y-Coordinate error

0 10000 20000 30000
-1,5

-1

-0,5

0

0,5

1

reacTIVision BullsEye

time in ms

de
gr

ee
s

Figure 15: Rotation error

When tracking shrinking tags BullsEye lost tracking of a fidu-
cial when the size of the fiducial (including padding) got be-
low 29 pixels in diagonal size. This corresponds to 1.9% of
the table diagonal or 2.4cm in diagonal on a 100 times 80 cm
table. In comparison reacTIVision lost tracking of a fiducial
when the size got below 57.3 pixels in diagonal which corre-
sponds to 4.7 cm a similar sized table. It should be noted that
reacTIVision in our initial measurements could track fiducial
sizes equally as small as BullsEye. This, however, was a re-
sult of reacTIVision assuming that if it detects anything at the
same location in consecutive frames it has the same id.

Discussion
In the generated video we used a standard 16:9 aspect ratio.
This means that the resolution of Y-coordinates is almost half
the resolution of X-coordinates. Our data therefore indicates
that BullsEye is significantly more accurate on lower reso-
lutions than reacTIVision. This may be attributed to a com-
bination of a more inaccurate calibration of reacTIVision at
lower resolutions, and that the effects of binarization are em-
phasized at lower resolutions.

The measurements of the X and Y coordinates are taken as
the fiducials moved diagonally across the surfaces of the ta-
ble. Curves in the coordinate plot therefore implies inade-
quate compensation for optical distortion. It is notable that
the BullsEye plots of the X and Y coordinates do not curve
like the reacTIVision plots do. The error rates of reacTIVision
are products of the tracking algorithm combined with the less
than optimal lens distortion calibration. An inaccurate cali-
bration can explain the curves in the plots of the error rates
for reacTIVision. Given a perfect geometric calibration of re-
acTIVision, which in theory should remove the curves in the
error rates, the overall amplitude of the error rate in BullsEye
would still be significantly lower than reacTIVision’s.

The presented results are products of a simulated video input.
We were not able to provide a ground truth for computing ab-
solute error rates for tracking on a real video input. We have,
however, observed similar improvements in relative tracking
accuracy from reacTIVision to BullsEye by tracking on real
video from one of our tabletops as those we see on our sim-
ulated input. Here a reacTIVision and BullsEye fiducial was
placed side-by-side on a single tangible that was then moved
across the tabletop.

EXPERIENCES AND PERFORMANCE
Besides being used in numerous research prototypes and stu-
dent projects BullsEye has been used for two full scale tan-
gible 3D tabletop installations deployed in the wild: Tangi-
ble Urban Planning demonstrates how tangible 3D tabletops
can support collaborative activities in urban planning and de-
velopment projects [5] (figure 16, top). Projected Play is a
tangible 3D tabletop installation developed for LEGO World,
a four-day in-door entertainment held in the city of Copen-
hagen and attracting more than 40.000 visitors in 2013 [9]
(figure 16, bottom left). BullsEye has also been used for more
traditional tangible tabletop applications such as the RADAR
Table (figure 16, bottom right); a tangible music interface re-
cently deployed at the 2011 SPOT music festival in Aarhus,

Figure 16: Examples of projects using BullsEye: Tangible
Urban Planning (top), Projected Play (bottom left) and the
RADAR table (bottom right).

Denmark, as well as been presented at numerous conventions
and conferences [10].

We have used BullsEye for multiple different sized table-
tops, both small with a single camera for tracking and larger
with two cameras. We have implemented a PixelSense driver
for BullsEye and installed BullsEye on our lab’s Samsung
SUR40 table. While we haven’t been able to perform a simi-
lar comparison with the PixelSense tracking using simulated
input as we did with reacTIVision, our experience is that the
tracking on the SUR40 when using BullsEye is more accu-
rate, and more robust to changing light conditions.

We have not performed a systematic evaluation of the per-
formance of BullsEye. However, we have not experienced
that BullsEye is a performance bottleneck in our tangible 3D
tabletops. The largest interactive table of our lab uses two 50
frames per second input cameras with a combined resolution
of 2560 by 1024 pixels. Running on a consumer grade PC9,
BullsEye can easily keep up with the input from the cameras
(i.e. perform the tracking within 20 ms). We have had more
than 100 fiducials placed simultaneously on this particular ta-
ble without any significant decrease in tracking performance.

RELATED WORK
Improving the precision of fiducial tracking for interactive
tabletops has not gained significant interest. However, some
improvements of the original reacTIVision algorithm have
been proposed. Topolo Surface [15] combines the topolog-
ical approach of D-Touch [3] and reacTIVision [11] with an
angle based encoding of fiducial IDs. The primary goal is to
simplify the fiducial generation, allow for a wider ID range,
and to encode checksums of IDs in the fiducials. The angle
based encoding of fiducial IDs is similar to the one in Bulls-
Eye, and BullsEye could easily be extended with checksums
on fiducial IDs. Topolo Surface is CPU based, and relies on
a binarization step similar to that of reacTIVision. Unfortu-
nately the paper does not evaluate the precision of the track-
ing, nor is the software available for comparison.

9Intel Core i7-3770 3.4GHz CPU, Nvidia GeForce GTX680 GPU
and 4gb RAM

LightTracker [8] is a software framework for manipulat-
ing the image-processing pipeline at runtime particularly de-
signed for touch, but can be extended for fiducial tracking
as well (e.g. by integrating libfidtrack from reacTIVision).
LightTracker provides a manual calibration with some atten-
tion to possible lens distortion. The light calibration tech-
nique of LightTracker is based on a similar idea to the one
applied on BullsEye using an intensity map. The tracking
in LightTracker is CPU based, although designed to exploit
multiple threads to increase performance.

Fiducial tracking is not only used for tangible tabletops, but
central in augmented reality [1] as well [13, 7]. For aug-
mented reality, fiducials must be tracked in three dimensions
with a movable camera, hence the tracking algorithm is quite
different as for tabletop tracking and must compute distance
to fiducials and their rotation in an extra dimension. Shibata
and Yamamoto [17] demonstrate how to achieve subpixel pre-
cision in tracking fiducials for augmented reality using edge
detection on the GPU. The paper benchmarks against the
tracking in ARToolkit [13], and achieves similar improve-
ments in precision as when we compare BullsEye to reac-
TIVision.

CONCLUSION
In this paper we have presented a series of techniques for im-
proving the precision of optical fiducial tracking on tangible
tabletops implemented as part of the BullsEye computer vi-
sion software. We have demonstrated that subpixel precision
down to a tenth of a pixel can be achieved through a combina-
tion of a GPU based tracking algorithm, a fiducial design op-
timized for GPU tracking, a calibration of light allowing for
computation on grayscale values and an automated technique
for compensating for optical distortions in camera lenses.

ACKNOWLEDGEMENTS
We thank the staff at CAVI: Jonas Oxenbøll Petersen for work
on the applications of BullsEye, and Peter Friis for his hard-
ware expertise. We thank Henrik Korsgaard and Brian Bunch
Christensen for comments and critique. This research has
been supported by the interdisciplinary research center for
Participatory IT at Aarhus University.

REFERENCES
1. Azuma, R. T., et al. A survey of augmented reality.

Presence 6, 4 (1997), 355–385.

2. Bencina, R., Kaltenbrunner, M., and Jorda, S. Improved
topological fiducial tracking in the reactivision system.
In Computer Vision and Pattern Recognition-Workshops,
2005. CVPR Workshops. IEEE Computer Society
Conference on, IEEE (2005), 99–99.

3. Costanza, E., Shelley, S. B., and Robinson, J. D-touch:
A consumer-grade tangible interface module and
musical applications. In Proceedings of Conference on
Human-Computer Interaction (HCI03), Springer (2003).

4. Dalsgaard, P., and Halskov, K. Tangible 3d tabletops:
combining tangible tabletop interaction and 3d
projection. In Proceedings of the 7th Nordic Conference

on Human-Computer Interaction: Making Sense
Through Design, ACM (2012), 109–118.

5. Dalsgaard, P., and Halskov, K. Tangible 3d tabletops.
interactions 21, 5 (2014), 42–47.

6. Dillencourt, M. B., Samet, H., and Tamminen, M. A
general approach to connected-component labeling for
arbitrary image representations. J. ACM 39, 2 (Apr.
1992), 253–280.

7. Fiala, M. Artag, a fiducial marker system using digital
techniques. In Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 2, IEEE (2005), 590–596.

8. Gokcezade, A., Leitner, J., and Haller, M. Lighttracker:
An open-source multitouch toolkit. Computers in
Entertainment (CIE) 8, 3 (2010), 19.

9. Halskov, K., Dalsgaard, P., and Stolzes, L. Analysing
engaging experiences with a tangible 3d tabletop. In
Proceedings of Advances in Computer Entertainment
(ACE) 2014 (to appear), ACM (2014).

10. Hansen, N. B., and Halskov, K. Material interactions
with tangible tabletops: a pragmatist perspective. In
Proceedings of the 8th Nordic Conference on
Human-Computer Interaction (to appear), ACM (2014).

11. Kaltenbrunner, M., and Bencina, R. reactivision: a
computer-vision framework for table-based tangible
interaction. In Proceedings of the 1st international
conference on Tangible and embedded interaction, ACM
(2007), 69–74.

12. Kaltenbrunner, M., Bovermann, T., Bencina, R., and
Costanza, E. Tuio: A protocol for table-top tangible user
interfaces. In Proc. of the The 6th Int’l Workshop on
Gesture in Human-Computer Interaction and Simulation
(2005).

13. Kato, H., and Billinghurst, M. Marker tracking and hmd
calibration for a video-based augmented reality
conferencing system. In Augmented Reality,
1999.(IWAR’99) Proceedings. 2nd IEEE and ACM
International Workshop on, IEEE (1999), 85–94.

14. Mitchell, D. P., and Netravali, A. N. Reconstruction
filters in computer-graphics. In ACM Siggraph
Computer Graphics, vol. 22, ACM (1988), 221–228.

15. Nishino, H. Topolo surface: A 2d fiducial tracking
system based on topological region adjacency and angle
information. Journal of Information Processing 18
(February 2010), 16–25.

16. Rost, R. J. OpenGL shading language. Addison-Wesley
Professional, 2004.

17. Shibata, N., and Yamamoto, S. Gpgpu-assisted subpixel
tracking method for fiducial markers. Journal of
Information Processing 22, 1 (2014), 19–28.

18. Wang, S., Bevans, A., and Antle, A. N. Stitchrv:
multi-camera fiducial tracking. In Proceedings of the
fourth international conference on Tangible, embedded,
and embodied interaction, ACM (2010), 287–290.

	Introduction
	Requirements

	Fiducial tracking in BullsEye
	Fiducial design
	Grayscale representation
	Compensation for optical distortion
	Tracking implementation
	BullsEye User Interface
	Limitations

	Experimental Evaluation
	Results
	Discussion

	Experiences and performance
	Related work
	Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES

