
Codestrates: Literate Computing with Webstrates
Roman Rädle1, Midas Nouwens1, Kristian Antonsen1, James R. Eagan2,3,4, Clemens N. Klokmose1

1Aarhus University, 2LTCI, 3Télécom ParisTech, 4Université Paris-Saclay

{roman.raedle,kba}@cc.au.dk, james.eagan@telecom-paristech.fr, {midasnouwens,clemens}@cavi.au.dk

Figure 1. Three example uses of Codestrates. (A) Collaborative authoring of a physics report; accelerometer data from a phone is visualized in real-
time in the codestrate and across multiple devices. (B) A codestrate is extended with real-time video communication. (C) Runtime tinkering with the
mechanics of a game implemented in a codestrate.

ABSTRACT
We introduce Codestrates, a literate computing approach to
developing interactive software. Codestrates blurs the dis
tinction between the use and development of applications. It
builds on the literate computing approach, commonly found
in interactive notebooks such as Jupyter notebook. Literate
computing weaves together prose and live computation in the
same document. However, literate computing in interactive
notebooks are limited to computation and it is challenging to
extend their user interface, reprogram their functionality, or
develop stand-alone applications. Codestrates builds literate
computing capabilities on top of Webstrates and demonstrates
how it can be used for (i) collaborative interactive notebooks,
(ii) extending its functionality from within itself, and (iii) de
veloping reprogrammable applications.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Literate programming; literate computing; interactive
notebooks; real-time collaboration; reprogrammable systems

INTRODUCTION
Webstrates [7] demonstrates how software can become repro
grammable and extensible in a collaborative fashion, blurring
the distinction between applications and documents through a
simple change to the web stack—making the Document Ob
ject Model (DOM) of web-pages persistent and collaboratively

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UIST 2017, October 22–25, 2017, Quebec City, QC, Canada

© 2017 ACM. ISBN 978-1-4503-4981-9/17/10. . . $15.00

DOI: https://doi.org/10.1145/3126594.3126642

editable. Klokmose et al. present two approaches for devel
oping with Webstrates: (i) using the web browser’s built-in
developer tools to edit the DOM, and (ii) using a dedicated
code-editor webstrate that loads the code of other webstrates
through transclusion using iframes. In both of these cases,
there is a separation between using a webstrate and changing
its appearance and behavior. The first approach limits develop
ment to desktop computers and makes use of a tool meant for
debugging rather than developing. The second introduces an
application-document relationship between webstrates, where
the user has the overhead of loading the target webstrate in a
separate code editor to make changes.

In interactive notebooks, use and development happen in
the same context. They have become popular with non
professional programmers in education and scientific commu
nities because they allow for authoring content, using code to
process data, and visualizing results in the same document [8].
The creators of the popular Jupyter notebook call this approach
literate computing [12]. It is based on literate programming [9]
proposed by Knuth, which is a way to intermix code and tex
tual narrative in a single document. Through the process of
tangling and weaving, code and narrative are divided into sepa
rate files whereby code becomes executable, and the narrative
presents itself in a human readable format. Knuth’s goal was
to “provide a tool for system programmers, not for high school
students or for hobbyists” [9], where system programmers can
explain programs “better than ever before.”

Literate computing as realized in interactive notebooks com
bines prose and rich media with executable code. It allows
everyone—including high school students and hobbyists— to
weave “a narrative directly into a live computation, interleav
ing text with code and results to construct a complete piece
that relies equally on the textual explanations and the compu
tational components.”1 In an interactive notebook, documents

1Definition by Fernando Perez — http://blog.fperez.org/
2013/04/literate-computing-and-computational.html
(last accessed: July 16, 2017)

1

https://doi.org/10.1145/3126594.3126642
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
mailto:permissions@acm.org
mailto:midasnouwens,clemens}@cavi.au.dk
mailto:james.eagan@telecom-paristech.fr
mailto:roman.raedle,kba}@cc.au.dk

can be created that interleave blocks of executable code with
blocks of (rich) text. The output from the code can become
itself part of the document (e.g., in the form of textual data or
graphics).

The driving motivation for literate computing, as introduced
with interactive notebooks like Jupyter, has been to improve
scientific reproducibility and to integrate scientists’ writing
and computing activities in one environment [12]. We be
lieve the literate computing approach of interactive notebooks
has potential beyond scientific computing, especially for nar
rowing the gap between developing and using applications.
However, today’s interactive notebooks have limitations: (i)
saving application states is difficult, limiting the ability to
develop applications from within a notebook, (ii) real-time
collaboration is, at best, limited to text editing, and (iii) the
behavior of a notebook cannot be reprogrammed or extended
from within, limiting its expressive power.

We present Codestrates, an alternative approach to building
user-extensible collaborative interactive systems that combines
literate computing with the possibilities of Webstrates. First,
Codestrates pushes the literate computing approach by making
possible the collaborative computation, extension, and devel
opment of applications with persistent states in the same envi
ronment, hereby narrowing the gap between development and
use of interactive systems. Second, Codestrates enables proto
typing in a manner similar to code playgrounds (e.g., Swift,
Codepen, or JSFiddle), but with the potential to become us
able applications by persisting their states. Third, Codestrates
provides a development environment for Webstrates that goes
beyond the paradigmatic application-document model. Code
strates is open source and ready for everyone to tinker with at
http://codestrates.org.

We review related work, explain the concept of Codestrates,
and demonstrate its capabilities with three usage scenarios,
inspired by our own day-to-day use: (i) using a codestrate as a
collaborative interactive notebook (Figure 1A), (ii) extending
the functionality of a codestrate from within itself (Figure 1B),
and (iii) developing reprogrammable applications in a code
strate (Figure 1C). We explain the technical implementation
of Codestrates, discuss its limitations, and evaluate it based
on Olsen’s “solution viscosity” criteria [15].

RELATED WORK
Codestrates combines real-time, web-based collaborative
authoring; documents that blend multimedia with exe
cutable code in a literate computing style; and end-user
(re)programmability of document and application. We dis
cuss related work that combines some of these elements.

Collaborative systems and documents
Jupiter [14] was an early collaborative multi-user dungeon
built around shared, persistent “virtual places” (i.e., rooms).
Users could create and customize places, documents, and tools
in Jupiter using the provided high-level windowing toolkit or
the internal programming language. Since then, Google Docs
has established itself as one of the first web-based tools for real-
time collaboration on documents. Dropbox recently released

their own collaborative word processor called Paper2, which
goes beyond traditional documents by allowing users to write
text, embed rich media, and include (non-executable) code
snippets.

Scriptable and reprogrammable applications
Shareable and malleable applications
HyperCard [5] was an early hypermedia system for producing
software that could easily be shared with and adapted by others.
Through a visual drag-and-drop interface, end-users could
create applications by building “stacks” of interactive cards.
Users could programmatically add interactivity to the cards
(e.g., a button on a card could link to another card in the stack)
using the provided scripting language Hypertalk. However,
HyperCard was only scriptable and not fully reprogrammable.

Reprogrammability of an environment at runtime
Smalltalk programming systems like Squeak [6] or Pharo3

allow users to extend a program’s functionality or even repro
gram it entirely at runtime through just-in-time compilation
and late binding [4]. Smalltalk relies on an image-based persis
tence model which forgoes a hard distinction between system
code, application code, and application state. In the recent
Lively project [18, 10], the concepts of Smalltalk have been
ported to the modern web architecture using JavaScript. It
takes an object-oriented approach to UIs based on Morphic
[11] by abstracting over the DOM and CSS.

Web-based code playgrounds & reactive programming
Web-based programming environments like JSFiddle4, JS
Bin5, and Codepen6 allow the user to experiment with code
and rapidly develop user interfaces, functionality, or applica
tions that stay reprogrammable and can be shared with others.
However, (i) the persistence and sharing of application states is
not supported, (ii) collaboration is only possible for the editing
of code, and (iii) the user’s code cannot change the develop
ment environment (e.g., to increase its expressive match [15]
by customizing its tools to match a programmer’s personal
preference).

Various web-based systems exist that try to make application
development more approachable by going beyond traditional
programming, such as through spreadsheet-like environments
in Gneiss [2] or using only HTML in Mavo [19]. However,
reprogramming the applications requires external editors or
importing them back into the development environment, rather
doing the edits within them.

Interactive notebooks using literate computing
Interactive notebooks
Jupyter notebook (formerly IPython Notebook)7 and Apache
Zeppelin8 are two popular interactive notebooks that can em
bed code in multiple programming languages. Interactive
2https://paper.dropbox.com/ (last accessed: July 17, 2017)
3http://pharo.org/ (last accessed: July 17, 2017)
4https://jsfiddle.net/ (last accessed: July 17, 2017)
5https://jsbin.com/ (last accessed: July 17, 2017)
6http://codepen.io/ (last accessed: July 17, 2017)
7http://jupyter.org (last accessed: July 17, 2017)
8http://zeppelin.apache.org (last accessed: July 17, 2017)

2

http://codestrates.org
https://paper.dropbox.com/
http://pharo.org/
https://jsfiddle.net/
https://jsbin.com/
http://codepen.io/
http://jupyter.org
 http://zeppelin.apache.org

notebooks can be used for data cleaning and transformation,
numerical simulation, statistical modeling, and machine learn
ing. However, the scope of the code extends only to the content
of the notebook; the user interface cannot readily be extended
from within a notebook. Jupyter supports extensions, but these
have to be installed on the server side and are developed exter
nally to the notebook. Zeppelin supports collaborative editing,
but only in designated text areas instead of the whole docu
ment. Neither Jupyter nor Zeppelin is designed for developing
stateful applications; persisting data requires manually writ
ing data to the file-system of the host computer or through a
database interface.

Reprogrammable applications using literate computing
Leisure9 and Eve10 are systems that share the most with Code
strates. Leisure is an open source, web-based, and document-
centric approach to computing based on the Emacs org-mode
document format [17]. Leisure provides two-way bindings
between an interactively editable representation of the docu
ment and its org-mode representation. Leisure documents are
served statically from a web server (but can retain changes
by connecting to a local Emacs buffer on a client’s machine).
Leisure supports WebSocket-based remote collaboration over
a separate relay server.

Eve is an ambitious project that aims to reimagine program
ming for everyone. It introduces a new programming language
in which the system state (including the UI) is addressable
through queries. Eve takes a literate programming approach
to developing full web applications and uses an interactive
notebook style user interface. Currently, the Eve project is still
in development and (although planned) has yet to implement
real-time collaboration and distribution across devices.

Codestrates combines conceptual ideas and technical imple
mentations of these related works; it adopts an image-based
persistence model inspired by Smalltalk, where the image
is the content of a webpage. Similar to Lively, Codestrates
builds on modern web technology, but does not abstract away
from the DOM and conventional web development. Code
strates follows the literate computing approach (and visual
structure) of interactive notebooks and the block-like code
representation of online programming playgrounds, but it goes
beyond in-line computation to programming and reprogram
ming applications—including itself. Codestrates provides
Google Docs style real-time collaboration, but (by leveraging
the Webstrates platform) shares the entire webpage instead of
just the editor buffer. Finally, Codestrates adopts the prototype
based approach to re-purposing software made by others from
HyperCard.

CODESTRATES OVERVIEW
A codestrate is essentially a webpage whose content, presenta
tion, and behavior can be (collaboratively) edited from within
the page and whose edits are inherently made persistent. It
includes everything it needs to both implement and edit itself.
New codestrates are created by copying another codestrate and

9https://github.com/zot/Leisure (last accessed: July 17,
2017)

10http://witheve.com (last accessed: July 17, 2017)

Figure 2. A schematic overview of the structure of a codestrate. On the
left are sections, which include system sections (hidden by default) and
one or more user sections. Sections can include paragraphs of differ
ent types (body, code, style, data). On the right is a sidebar (hidden by
default), which contains actions for the codestrate (create a copy of the
codestrate, tag and restore, pull from another codestrate) and actions
for the sections (toggle sections’ visibility, add section).

are automatically versioned. A codestrate can be broken into
three components: paragraphs, sections of related paragraphs,
and the entire codestrate implementation (details are in the
implementation section).

Use of paragraphs and sections
Paragraphs and sections in a codestrate are structured in a
linear fashion, similar to traditional text documents. Figure 2
shows a schematic overview of the structure of a codestrate.

Paragraph types and their function
A paragraph can be of the type body, code, style, or data:

•	 Body paragraphs contain what is typically considered the
content of a webpage and are directly editable through a
simple rich-text editing interface or an HTML inspector (as
illustrated in Figure 3).

•	 Code paragraphs contain editable JavaScript code that can
be toggled to run on page load or be executed by pressing
an execute button. The code in Codestrates executes in the
runtime of the browser. Code paragraphs have syntax high
lighting, indentation, auto-completion, and an expandable
interactive console for debugging.

•	 Style paragraphs contain Cascading Style Sheet (CSS) rules.
Changes are immediately reflected on the page. They have
syntax highlighting, indentation, and auto-completion.

•	 Data paragraphs contain editable data in the JavaScript Ob
ject Notation (JSON) format and have syntax highlighting
and indentation.

Each paragraph can be expanded to full-screen, collapsed to
a header only, locked against edits, deleted, and moved up or
down in the list of paragraphs or across sections. They can
also have a title and are addressable in JavaScript or in CSS
through their (optional) IDs or classes.

3

https://github.com/zot/Leisure
http://witheve.com

Figure 3. A screenshot of a codestrate; the user edited its style to favor
a lighter appearance. It shows a body paragraph with its HTML inspec
tor visible—visibility is toggled through the eye icon in the paragraph’s
header.

In Codestrates, the result of evaluating a code paragraph does
not have a standard output. Instead, the idea is to output
evaluated code results into body paragraphs. To facilitate this,
a body paragraph can include variables whose value can be
set from code paragraphs through a simple API (more details
are in the implementation section).

Combining paragraphs in sections
Sections are collections of related paragraphs. We distinguish
between system sections and user sections. System sections
contain the implementation of the codestrate itself and are
hidden by default. User sections contain whatever the user is
working on. However, whether a section belongs to the user
or the system is not fixed. Extending a codestrate with new
functionality is essentially turning a user section into a system
section by ticking a checkbox in the section’s header.

All sections are listed in the sidebar, which also provides
functions such as creating a new section, toggling a section’s
visibility, pulling sections from another codestrate, and tagging
and restoring the codestrate.

The traditional boundaries between development and use are
blurred in Codestrates. The user can fluidly move between
the two to the extent that developing and using interactive
systems are no longer necessarily separate activities. Figure 4
illustrates how a grocery list app can be developed in a code
strate with the user interface expressed in a body paragraph
and a style paragraph, and the interaction implemented in a
code paragraph that is set to run on page load (green running
man). Setting the body paragraph to full-screen turns the
codestrate into a “regular” application, usable across devices
(since the state is synchronized through the DOM). If changes
to the application are required, users can exit the full-screen

Figure 4. A simple grocery list implemented in a codestrate. On the left,
the codestrate in a desktop browser showing a body paragraph and the
top of a code paragraph. To the right, the same codestrate opened on a
smartphone, the body paragraph has been made full-screen and is now
functioning as a grocery list app.

mode again and make edits to the code—collaboratively and
in real-time.

USES OF CODESTRATES
We present three scenarios that highlight Codestrates’ capa
bilities, inspired by our own daily use over the course of six
months. The scenarios assume a future in which teachers and
students are fluent in computational thinking [20] and can
master a medium that requires more technical knowledge than
what is common today. The scenarios are also demonstrated
in the supplementary video.

Interactive notebooks in Codestrates
Alex, a secondary school physics teacher, prepares an assign
ment on speed and acceleration. He provides the students with
a notebook for the assignment, including interactive code ex
amples. One of the examples shows how students can access
the accelerometer and GPS data from their mobile phones
(Figure 1A). Later, on their laptops, the students add a button
that uses Alex’s code sample to store their current position
and acceleration in a data paragraph. They then collect data by
opening the codestrate on a smartphone and walking, running,
and cycling outdoors. When they return, they plot a graph of
the captured data for another assignment in the notebook.

How it works
The assignment notebook is created by copying a code
strate (e.g., by opening the URL /codestrate/?copy=
assignment-notebook), adding a section and a body para
graph to it, and using the rich-text capabilities to add content.
Interfacing with the sensors on the device is done by writing
JavaScript in a code paragraph and using the geolocation11

and devicemotion12 APIs. The sensors’ current values are
displayed through variables, which are inserted into a body
paragraph and set through JavaScript in a code paragraph.
The newest version of the codestrate is then tagged as stable
and shared as a URL (e.g., /assignment-notebook/stable/,
where stable is the tag name).

Users create their copy of the stable version using the same
copy mechanism as before, but with the tagged assignment

11https://developer.mozilla.org/en-US/docs/Web/API/
Geolocation (last accessed: July 17, 2017)

12https://developer.mozilla.org/en-US/docs/Web/
Events/devicemotion (last accessed: July 17, 2017)

4

/codestrate/?copy=assignment-notebook
/codestrate/?copy=assignment-notebook
/assignment-notebook/stable/
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation
https://developer.mozilla.org/en-US/docs/Web/Events/devicemotion
https://developer.mozilla.org/en-US/docs/Web/Events/devicemotion

notebook as source codestrate (e.g., /assignment-notebook/
stable/?copy). A data paragraph is added to the copy and the
existing code paragraph is edited to store sensor values in the
data paragraph. The HTML editor of a body paragraph can be
used to add a button and an additional code paragraph to make
the button interactive. To plot data, the codestrate function
ality needs to be extended either by writing code for custom
visualization or by importing data visualization libraries (e.g.
Vega Lite13 [16]). The implementation section contains details
on how to import libraries.

In real use
We have actively used Codestrates as an interactive assignment
environment in our own classes. Twenty-five students in an
introduction to programming course for non-computer science
students completed their hand-ins for five consecutive weeks
using Codestrates. We prepared assignments as codestrates
with written instructions, interactive examples, automated test
ing, and code scaffolds (i.e., working but incomplete code the
students needed to edit). The assignment codestrates had a low
threshold [13] and allowed our students to immediately start
programming because they did not have to install development
environments or fiddle with server settings and file uploads.
We received positive feedback from the students through a
dedicated feedback section in the codestrates they were using.

Extending codestrates in Codestrates
Alex notices that his students are collaborating remotely on
their assignments after class. To hone his programming skills,
he decides to extend the assignment codestrate with video
communication. He copies a new codestrate and starts tinker
ing with Web Real-Time Communications (WebRTC). After a
few iterations, Alex manages to stream audio and video from
his web camera to all clients who have the same codestrate
open (illustrated in Figure 1B). The codestrate already shows
an avatar for each connected client in the bottom left corner,
so Alex overlays users’ avatars to display their video streams.
He pulls the section with the WebRTC code into the assign
ments codestrate and emails the students to let them know
they can update their codestrates if they want to use this new
functionality.

How it works
For video and audio streams, users can exploit the getUser
Media14 API. The video and audio stream can be added to a
DOM node with Webstrates’ streaming API15. To build the UI
of this new functionality, the user can add HTML, CSS, and
JavaScript in body, style, and code paragraphs respectively.
The video element can be placed on top of the already existing
avatar elements. The user can tag the current version of the
codestrate with a meaningful name through an action in the
sidebar. If an existing tag is reused, it will be updated to the
current version. Other codestrates can update their sections
with the changes using the “pull sections” function.

13https://vega.github.io (last accessed: July 17, 2017)
14https://developer.mozilla.org/en-US/docs/Web/API/
MediaDevices/getUserMedia (last accessed: July 17, 2017)

15https://github.com/Webstrates/Webstrates (last ac
cessed: July 17, 2017)

In real use
We have implemented several features by copying codestrates
and pulling sections with new features back into the mas
ter codestrate. We usually started features in user sections
but eventually changed them to system sections (e.g., remote
pointers, video communication). The fluid way with which we
can move between using and developing a codestrate results
in the continuous development of functionality in response
to specific tasks at hand. If the same functionality in one
codestrate is needed at a later point in time for different tasks,
those sections can easily be transferred between codestrates.
For example, one user built a presentation tool for a research
talk. That tool was then copied by someone else and extended
with an in-slide code editor to teach a programming course.
A static PDF viewer was extended to a mobile note-taking
tool that allowed hand-written annotations from an iPad, then
extended again into a review writing tool with a simple text
processor next to it. Through using and developing codestrates
this way, we have access to an organically growing repository
of functionality instead of a limited collection defined during
the traditional development phase.

Developing applications in Codestrates
Jim and Bethany, two of Alex’s students, are part of an extra
curricular game development club. They have been working
on a multi-player tank game in a codestrate with the help
of an open source web-based game engine. One day, while
playing the game across their networked computers, they real
ize something is wrong with the physics of the bullets—not
bouncing off the walls. They exit the full-screen mode of the
body paragraph that hosts the game view and together edit the
function that calculates the bullet path. The changes are im
mediately reflected in the running game, helping them iterate
through different equations until they are satisfied (illustrated
in Figure 1C).

How it works
Web-based game engines such as Phaser16 can be used to
render the game to a canvas element in a body paragraph.
The game itself can be built using code paragraphs and is
similar to regular game development in JavaScript. To add a
multi-player mode in which the game state is synchronized
between multiple players, users can—similar to the video
streaming from above—leverage Webstrates’ signalling API
to send messages between clients of the same codestrate. It is
possible to require the code of another code paragraph in the
game loop, which allows for changing the game mechanics
at runtime without reloading the page. Requiring code is
explained in the implementation section.

In real use
We hired a professional game developer for a day to demon
strate that it was possible to build a multi-player game in a
codestrate. He implemented a simplified version of a tank
game he had previously developed17. With only a brief intro
duction to how Codestrates works and the signalling API of
Webstrates, he was able to implement the game without sig
nificant assistance over the course of a day. He struggled with

16https://phaser.io (last accessed: July 17, 2017)
17https://www.tanktrouble.com/ (last accessed July 11, 2017)

5

/assignment-notebook/stable/?copy
/assignment-notebook/stable/?copy
https://vega.github.io
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://github.com/Webstrates/Webstrates
https://phaser.io
https://www.tanktrouble.com/

the lack of screen real estate to get an overview of all his code, <html>1

but enjoyed the ability to tweak gameplay mechanics and see
them reflected in the game immediately. We will address the
lack of screen real estate in the discussion section.

IMPLEMENTATION
Codestrates is implemented on top of Webstrates [7]. In order
to understand the architectural choices and implementation
details of Codestrates, it is necessary to understand how Web
strates works.

How Webstrates works
Webstrates consists of a web server where all client-side
changes to the DOM are persistent, and it synchronizes those
changes to all clients of the same page. When a browser re
quests a page from the Webstrates server (e.g. /myWebstrate),
it is served a generic HTML page containing a Webstrates
client written in JavaScript. The client connects to the server
through a web socket and receives the requested webstrate (e.g.
myWebstrate) in a serialized JSON format. The client deserial
izes the JSON, populates the DOM of the generic HTML page,
observes the DOM for changes using a MutationObserver,
and listens on the web socket connection for changes made by
other clients. Synchronization happens through operational
transformation (OT) [3] using the open source OT framework
ShareDB18. Webstrates uses OT to maintain a consistent docu
ment state across clients, thus providing real-time collaborative
editing of the DOM. Because ShareDB synchronizes opera
tions on JSON documents, Webstrates’ inner representation
of the DOM is JSON using JsonML19. Webstrates leverages
the principle of transclusion (using iframes) as a composition
mechanism, which creates a dynamic relationship between
two or more webstrates.

A new webstrate is created by requesting a webstrate that does
not exist or by creating a copy of an existing webstrate. A
webstrate can be copied either to a new webstrate with a ran
dom id (using /myWebstrate/?copy) or to a named webstrate
(using /myWebstrate/?copy=myWebstrateCopy).

Webstrates has a simple versioning mechanism based on op
eration logs. For example, requesting /myWebstrate/1432
will retrieve the HTML of the 1432nd version of myWebstrate,
and /myWebstrate/?restore=1432 will restore it to the state
it had at the 1432nd version by applying the operations match
ing the difference between the current and the 1432nd ver
sion. Versions can be tagged with human-readable names and
tags can be retrieved in the same manner as versions (e.g.,
/myWebstrate/myTag). The Webstrates server automatically
generates a tag for a webstrate when no edits were made for a
set period of time.

Webstrates uses external authentication providers (e.g.,
GitHub). User rights such as read, read-write, or none can be
added to a webstrate using the data-auth attribute on the
html element. User information such as their username and
avatar are accessible through a JavaScript API.

18https://github.com/share/sharedb (last accessed: July 17,
2017)

19http://www.jsonml.org (last accessed: July 17, 2017)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

<head>
<script type="text/javascript">
<!-- see Listing 2 -->

</script>
</head>
<body>
<div class="section section-hidden" data-type="system">
<div id="bootstrap" class="paragraph code-paragraph">
<pre type="text/javascript">
// Code that queries and executes all
// run-on-load code paragraphs

</pre>
</div>

</div>
<div class="section" name="A System Section"

data-type="system">
<div class="paragraph code-paragraph"

run-on-load="true">
<pre id="code-on-load" type="text/javascript">
// Executed by code paragraph in line 10

</pre>
</div>

</div>
<div class="section" name="A User Section">
<div class="paragraph body-paragraph">
<div id="body" class="class1 class2"

contenteditable="true">
<!-- HTML -->

</div>
</div>
<div class="paragraph style-paragraph">
<style id="style" type="text/css">
/* CSS */
</style>
</div>
<div class="paragraph code-paragraph">
<pre id="code" type="text/javascript">
// JavaScript

</pre>
</div>
<div class="paragraph data-paragraph">
<pre id="data" type="application/json">
/* JSON */

</pre>
</div>
</div>
</body>
</html>

Listing 1. Simplified HTML structure of a codestrate.

Extensions to Webstrates
In parallel to Codestrates, Webstrates has been extended with
a number of features that make the development of larger
systems more convenient. Codestrates relies on many of these
extensions, e.g., tagging, transient elements, assets, signalling,
and streaming (e.g., to support WebRTC).

A transient element has been introduced that allows for
adding elements to the DOM that are neither persistent nor
synchronized to other clients. A custom context menu is an
example of something that makes sense to put in a transient
element because it is ephemeral and only relevant for the
user who opened it. In addition, users can exploit Webstrates’
transient element in a codestrate to write an application
that has visually distinct appearances on different clients.

Binary assets such as images or videos can be attached to
a webstrate (through a POST request) and accessed as child
web documents, e.g., myWebstrate/myVideo.mp4. Assets are
versioned as with any other change made to the webstrate
document.

6

/myWebstrate
/myWebstrate/?copy
/myWebstrate/?copy=myWebstrateCopy
/myWebstrate/1432
/myWebstrate/?restore=1432
/myWebstrate/myTag
https://github.com/share/sharedb
http://www.jsonml.org
myWebstrate/myVideo.mp4

A signalling API has been developed to allow clients of the
same webstrate to communicate with each other without ma
nipulating the DOM. Clients can broadcast signals to every
client of the same webstrate or send targeted signals to a sub
set of clients (the client list is accessible through the API).
Signals can contain JSON objects as message payloads. For
example, Codestrates uses signals to communicate ephemeral
states such as remote cursor and pointer positions or to estab
lish WebRTC connections between clients of the same code
strate. Finally, streaming allows peer-to-peer communication
between clients using WebRTC.

Codestrates
Every codestrate is a webstrate that includes the codestrate
implementation and the user content: it is completely self-
contained. The markup (HTML), styling (CSS), program
code (JavaScript), and data (JSON) are stored in a codestrate’s
document body, each wrapped in a paragraph element (<div
class="paragraph">). As a structuring mechanism, para
graphs are grouped inside sections (<div class="section
">). Webstrates ensures that changes to the content of a code
strate are made persistent and synchronized to all clients of the
same codestrate. Listing 1 shows a simplified HTML of the
document structure with two system sections (one hidden), a
user section, three code paragraphs (one hidden by its section),
a body paragraph, a style paragraph, and a data paragraph.

Bootstrapping and code execution
Code execution in Codestrates differs from the regular
JavaScript execution routine of a browser. Its execution relies
on three integral conditions: (i) there is bootstrap code in a
script element in the document head (Listing 1, line 3);
(ii) all other code is stored in pre elements, which are not
executed on page load; and (iii) one code paragraph has the id
#bootstrap (Listing 1, line 9).

A codestrate is bootstrapped with the four lines of code in
Listing 2, which are executed after the webstrate has loaded.
This code triggers the execution of the code paragraph with the
id #bootstrap, which queries the DOM for all other code
paragraphs with the attribute run-on-load set to true (e.g.,
Listing 1, line 19) and synchronously executes them in the
order that they appear in the DOM.

1 webstrate.on("loaded", function () {
2 var codeParagraph = document.querySelector("#bootstrap");
3 new Function(codeParagraph.textContent)();
4 });

Listing 2. Codestrates’ bootstrap JavaScript code.

Each code paragraph is executed in its own scope and execu
tion context using the Function object. Code paragraphs do
not create closures to their creation contexts and are only
able to access their own local variables and variables de
fined in global scope (e.g., the document object to call the
querySelector function). This prevents users from acciden
tally overriding and interfering with Codestrates’ execution
logic. The execution context provides access to a proxied
console and a Variable object. Each code paragraph has
its own console output; all log, error, debug, warn, and
info function calls on the console object are logged to this
output before they are redirected to the window’s console. The

Variable object provides convenience functions to replace
content in a body paragraph. For example, a variable myVar is
inserted into a body paragraph using its rich-text editor tools
(see Add Variable in Figure 5). The content of myVar can be set
from any code paragraph using Variable("myVar").set(
"newValue"). The variable is represented as <div class
="variable" data-name="myVar"></div> in the body
paragraph.

Requiring modules and importing external libraries
A code paragraph can require the execution of another code
paragraph using CSS selectors (e.g., var myModule =
require("#myModule")) or class selectors (e.g. require
(".myModules")). When code is required using a class se
lector, all code paragraphs of that particular class are queried,
their contents are concatenated, and the code is executed
as one script. Executing the content of a required code
paragraph adds an additional exports object in the execu
tion context. A required code paragraph can expose vari
ables and functions to the caller paragraph using the exports
object (e.g., exports.myVar = "myValue" or exports.
myFunction = function() {...}). The exports object
is a plain key value store that allows code paragraphs to ex
port multiple variables and functions. The require function
will return the exports object in order for the calling code
paragraph to access exported variables and functions (e.g.,
myModule.myVar or myModule.myFunction()).

External JavaScript libraries can be used through importLib
(Listing 3), which takes either a single URL or reference

to a webstrate asset, or an array of them. For each URL,
Codestrates adds a transient element to the document head
with the script element inside. This way, added scripts

do not persist and are not synchronized with other clients.
Because browsers execute script elements asynchronously
when added at runtime, two external JavaScript libraries that
depend on each other can cause faulty code when added after
page load. Codestrates’ importLib guarantees that external
JavaScript libraries are loaded and executed synchronously in
the order in which they have been defined in the array.

The importLib function returns a promise which resolves af
ter all libraries have been imported (i.e., loaded and executed).
The code in the resolve function can then use imports the
same way as script elements that are loaded synchronously.
Importantly, subsequent code paragraphs will be blocked un
til the preceding code paragraph has imported and executed
all external libraries, executed all code paragraphs that are
required within, and finally executed all of its own code.

1 importLib([
2 "//cdn/extLibrary.js",
3 "assetLibraryDependingOnExtLibrary.js"
4]).then(() => {
5 // code executes after both libraries are imported
6 });

Listing 3. Import external libraries in a Codestrates code paragraph.

Generating user interfaces and structuring paragraphs’ data
As part of Codestrates’ core system functionality, the user in
terface (UI) elements for sections and paragraphs are generated
at runtime (e.g., the rich-text editor tools for a body paragraph

7

http:assetLibraryDependingOnExtLibrary.js
http:cdn/extLibrary.js

Figure 5. Codestrate view of Listing 1, including paragraphs and their
contents. The section containing the bootstrap code is hidden.

(Figure 5)). A MutationObserver observes the body ele
ment of a codestrate and its subtree to create user interfaces
for sections and paragraphs that are added to the document
after initial loading. The UI elements are programatically cre
ated using transient elements in order to keep their states
local instead of synchronizing them between clients. This way,
expanding the HTML editor of a body paragraph only has an
effect locally.

The content of body paragraphs are contenteditable20

div elements directly visible to the user. All changes within
a div element are immediately reflected in the DOM and
Webstrates synchronizes changes with other users of the same
codestrate.

For the code, style, and data paragraphs, the element storing
their content is hidden from the users through CSS, and a
transient element is generated with a CodeMirror21-based
editor that creates a two-way binding between its text buffer
and (remote) changes to the element’s content. CodeMirror
comes with support for syntax highlighting, code completion,
formatting, and other functionality expected from modern code
editors. As an optimization, we only instantiate CodeMirror
instances for visible paragraphs.

CSS is stored directly in a style element. Therefore, changes
to CSS rules in style paragraphs have an immediate effect on
the rendering of the codestrate’s content. Code is executed ei
ther explicitly by the user through pressing the execute button
in the code paragraph’s header, or after the webstrate has been
loaded provided that the user enabled the run-on-load in the
code paragraphs header (the green running man Figure 5, top).

Remote collaboration
Since Webstrates synchronizes the DOM between connected
clients transparently, Codestrates allows for remote collabora
tion. However, ephemeral data such as pointers (e.g., mouse
cursor or touch points) are not synchronized.

20https://developer.mozilla.org/en-US/docs/Web/
HTML/Global_attributes/contenteditable (last accessed:
July 17, 2017)

21http://codemirror.net (last accessed: July 17, 2017)

Using signalling, we implemented a user manager and remote
pointers in Codestrates to support awareness of other users.
Every client that joins a codestrate broadcasts the user’s in
formation to all other clients. If a user is authenticated, the
codestrate broadcasts the username, friendly name, and avatar
url of the user; otherwise it broadcasts as anonymous with a
default avatar. The default codestrate UI shows all connected
users as avatars in the bottom left corner in a transient
element. Each user gets assigned a distinct color that is visible
as the border of their avatar.

Each client broadcasts pointer positions (such as mousemove
and touchmove) and pointer actions (such as click and tap
). Remote pointers are represented as transient elements
positioned relative to the nearest paragraph, which share di
mensions across devices and screen sizes. Actions are styled
div elements appended to the pointer element and removed
after a timeout. Cursor positions and selections in editors
are synchronized across clients to allow for Google Docs-like
document-centric authoring. The user color from the user man
ager is used to color pointers and cursors in order to associate
actions with remote users.

Video and audio communication is implemented using
Webstrates’ transient element and streams, and the
getUserMedia API. A codestrate listens for incoming
streams from other clients, automatically accepts them, and
overlays the sender’s avatar with a video element rendering
the stream. The video element is wrapped in a transient
element and not synchronized with other clients. To start video
and audio streaming, a user has to click on the video camera
icon that is revealed when hovering over the user’s own avatar.

Versioning and updating
Codestrates provides a UI for easily tagging and restoring
versions of a codestrate. Pressing the restore button in the
sidebar shows a dialog with a list of both user-generated and
auto-generated tags, which are accessed using the Webstrates
versioning API.

Because a codestrate contains all of its implementation, it
needs to be updated manually when a new feature is intro
duced or a bug is found in the codestrate from which it was
copied. To support this, users can pull sections from other
codestrates or even from an earlier version of the same code
strate. The pull sections functionality loads a codestrate of a
specific version into the calling codestrate using an iframe
wrapped in a transient element. To pull a section, the

user provides the codestrate id and (optionally) specifies the
version of the codestrate to be pulled and a CSS selector for
particular elements of the codestrate (if unspecified, the latest
version and the “system section” selector will be used). The
codestrate then deletes all of its sections that match the CSS
selector; queries sections matching the CSS selector in the
codestrate being pulled and deep clones them; appends the
cloned elements to itself; and finally reloads the webpage after
all operations (OT) are synchronized with the server. While
pulling sections would work without a reload, doing so ensures
code written by others always runs without side-effects.

8

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/contenteditable
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/contenteditable
http://codemirror.net

DISCUSSION
Codestrates is a proof of concept that targets the complex ac
tivity of both using and developing interactive systems. Some
limitations arise due to the wide variety of practices that mod
ern development environments are expected to support (e.g.,
fine-grained version control and interoperability with the op
erating system). Thus, a comparative evaluation with well-
established systems (e.g., development environments or code
playgrounds) would be challenging, as stated by Olsen [15].
He proposes “solution viscosity” criteria as alternatives, which
allow user interface systems research to be evaluated analyti
cally. We discuss Codestrates as a literate computing approach
to developing interactive systems using these principles.

Limitations and future work
Out-of-browser code execution and Jupyter integration
Code execution in Codestrates happens at runtime and only
within the browser. This limits language support to JavaScript
(or languages compiled or transpiled to it) and means it does
not have access to the operating system of the host computer.
However, we have successfully experimented with using a
Jupyter kernel running on the local machine to execute Python
code from a codestrate. We created Python specific code para
graphs that post their code over HTTP to the local Jupyter
kernel when executed and have the standard output redirected
to the console of the code paragraph. Future research includes
a model for managing in-browser and out-of-browser com
putation (e.g., on a local computer or an online service) and
polyglot code execution in a codestrate where various pro
gramming languages can be combined to perform a series of
dependent computations.

Version control
Version control systems (e.g., Git or Subversion) are essen
tial for systems development. Codestrates allows tagging of
and branching from codestrates, but updating from another
codestrate replaces affected paragraphs entirely. It does not
support automatic or manual merging of paragraph contents.
We plan to integrate merging algorithms in future work, such
as a recursive three-way merge.

Codestrates’ “pull section” mechanism allows for very id
iosyncratic ways of feature and application development: (i)
changes can happen in a copy of the Codestrates prototype and
after testing be pulled back into the prototype; (ii) copies can
be updated to the latest version of the Codestrates prototype by
pulling the latest version of system sections; and (iii) (system)
sections in a codestrate can be downgraded without undoing
the changes in-between (e.g., the changes that happened to
other sections).

Overhead of development environment
Applications developed with Codestrates carry more weight
than regular web applications because they include both the
application code and a development environment. Loading
time and memory consumption of an application built with
Codestrates is higher than a comparable traditional web appli
cation. The overhead adds ~800 kilobytes of data (including
external and non-minified libraries like CodeMirror). Future
work includes caching strategies for external libraries and lazy
loading of the development environment.

Textual programming
Codestrates currently only allows users to express interactive
behavior through textual programming using JavaScript and
the DOM API. Visual languages, such as Scratch22, or lan
guages influenced by natural language, such as HyperTalk
[5], have successfully introduced beginners and children to
programming. These approaches could be integrated in Code
strates and even be used interchangeably, so that Codestrates
can adapt to the experience level of the programmer. We
strongly believe that the threshold for expressing interaction
and computation in a codestrate should be lower so it can be
used by a wider audience with different levels of computa
tional literacy [13].

Usability
Full-screening a paragraph is currently not a transient action,
which means that it affects all clients of the same codestrate.
This makes it impossible for a user to change the style or
code of a codestrate while also running it as a full-screen ap
plication on another device or for multiple users to view the
codestrate in different ways. Adding this flexibility would
mean that users could maximize the use of screen real-estate
(e.g., across multiple screens instead of continuously scrolling
through the document), which was mentioned as a limitation
by the game developer who implemented the multi-player
game in Codestrates. This would be possible by CSS rules tar
geting transient attributes available with the newest version of
Webstrates, attributes that are not persistent and synchronized.

While the CodeMirror library we use in Codestrates provides
many of the editing capabilities of modern programming IDEs,
it is still limited compared to desktop editors. For example, it
lacks advanced auto-completion and refactoring features now
taken for granted when developing software. (Their absence
was noticed by our students.)

Systems-oriented evaluation
According to Olsen, a user interface system can be evalu
ated according to its “solution viscosity”, which expresses
the effort of a programmer to create possible solutions. Good
systems can reduce solution viscosity in three ways: flexibility,
expressive leverage, and expressive match.

Flexibility
Good flexibility allows the user to make rapid changes and
evaluate them immediately [15]. Codestrates supports flexibil
ity with paragraphs and sections that remain inspectable and
whose changes can be evaluated at runtime. For example, a
user can customize the look of a codestrate-based application
by changing CSS properties in a style paragraph, change ap
plication behavior by changing the respective code paragraph,
or add functionality at runtime by writing new code.

Expressive leverage
A system with a high expressive leverage reduces the choices
a user can make while still being able to express more [15].
Since Codestrates builds on Webstrates, all content is by de
fault persistent and synchronized. As a result, there are no

22https://scratch.mit.edu/ (last accessed: July 17, 2017)

9

https://scratch.mit.edu/

additional software layers necessary to add real-time collabo
ration and there is no need to create databases or add services
to persist application data and states.

Expressive match
The expressive match refers to “how close the means for ex
pressing design choices are to the problem being solved” [15].
With Codestrates, we anticipate a future generation where
computational thinking is part of formal education practices
and considered a “fundamental skill for everyone” [20]. Al
though this generation will know how to express computation
in code, they are considered non-professional programmers
[1] and may not have acquired a fundamental knowledge about
computing technology (e.g., an understanding of client/server
communication). Olsen argues that new tools should be “ac
cessible, easier or more effective for this desired population”
and they should support “different norms of expression or
design goals that are not supported by existing tools.”

With literate computing expressed in Codestrates’ paragraphs,
users can “read a program” from top to bottom to understand
its execution order, much like reading a book or an article.
This is greatly different from often complex dependencies in
file-based projects. It is also different from a single HTML file
containing HTML, JavaScript, and CSS edited in a file editor;
paragraphs in Codestrates containing HTML, JavaScript, or
CSS are visually distinct from each other and provide addi
tional tools like “execute” for code paragraphs or rich-text
editor tools for body paragraphs. Changes to body, style, code,
or data paragraphs are immediately part of the codestrate that
contains them and thus are already “deployed.” There is no
need to copy code from a playground, paste it to a file, and
deploy it on a server to make it accessible to everyone. Code
strates is agnostic to any programming pattern and might in
the future even be agnostic to programming language (we are
currently investigating this topic). Users can exploit their pre
existing knowledge on web development without the need to
learn or adapt to a new programming language.

CONCLUSION
We have demonstrated how literate computing with Webstrates
not only allows for mixing prose and computation, but also
for extending the functionality of interactive notebooks from
within itself and developing reprogrammable applications—
collaboratively.

Codestrates is built on Web standards and is easily appropri
able and usable by anyone with a basic Web development
background. However, the presented usage scenarios in this
paper are based on currently fictional levels of technical pro
ficiency of non-professional programmers. Future research
includes iteratively co-designing codestrates to support real
users such as data scientists, secondary school teachers, stu
dents, and hobbyists, and exploring what could aid or prevent
end-user adoption of a medium such as Codestrates.

ACKNOWLEDGEMENTS
This work has been funded by the Aarhus University Research
Foundation. We thank Wendy Mackay, Michel Beaudouin-
Lafon, and the anonymous reviewers for their valuable sugges
tions and comments, Romain Primet for experimental Jupyter

integration, Brian Bunch Christensen for implementation of
the tank game, Jonas Oxenbøll Petersen for AV assistance, and
Lindsay Reynolds for proof-reading this paper.

REFERENCES
1.	 Margaret M. Burnett and Brad A. Myers. 2014. Future of

End-user Software Engineering: Beyond the Silos. In
Proceedings of the on Future of Software Engineering
(FOSE 2014). ACM, New York, NY, USA, 201–211.
DOI:http://dx.doi.org/10.1145/2593882.2593896

2. Kerry Shih-Ping Chang and Brad A. Myers. 2014.
Creating Interactive Web Data Applications with
Spreadsheets. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). ACM, New York, NY, USA, 87–96. DOI:
http://dx.doi.org/10.1145/2642918.2647371

3.	 C. A. Ellis and S. J. Gibbs. 1989. Concurrency Control in
Groupware Systems. SIGMOD Rec. 18, 2 (June 1989),
399–407. DOI:
http://dx.doi.org/10.1145/66926.66963

4. Adele Goldberg. 1995. Why Smalltalk? Commun. ACM
38, 10 (Oct. 1995), 105–107. DOI:
http://dx.doi.org/10.1145/226239.226260

5. Danny Goodman. 1987. The Complete HyperCard

Handbook. Random House Inc., New York, NY, USA.

6. Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace,
and Alan Kay. 1997. Back to the Future: The Story of
Squeak, a Practical Smalltalk Written in Itself. SIGPLAN
Not. 32, 10 (Oct. 1997), 318–326. DOI:
http://dx.doi.org/10.1145/263700.263754

7. Clemens N. Klokmose, James R. Eagan, Siemen Baader,
Wendy Mackay, and Michel Beaudouin-Lafon. 2015.
Webstrates: Shareable Dynamic Media. In Proceedings of
the 28th Annual ACM Symposium on User Interface
Software & Technology (UIST ’15). ACM, New York,
NY, USA, 280–290. DOI:
http://dx.doi.org/10.1145/2807442.2807446

8. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando
Pérez, Brian Granger, Matthias Bussonnier, Jonathan
Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout,
Sylvain Corlay, and et al. 2016. Jupyter Notebooks–a
publishing format for reproducible computational
workflows. Positioning and Power in Academic
Publishing: Players, Agents and Agendas (2016), 87–90.
DOI:
http://dx.doi.org/10.3233/978-1-61499-649-1-87

9. Donald E. Knuth. 1984. Literate Programming. Comput.
J. 27, 2 (1984), 97–111. DOI:
http://dx.doi.org/10.1093/comjnl/27.2.97

10. Robert Krahn, Dan Ingalls, Robert Hirschfeld, Jens
Lincke, and Krzysztof Palacz. 2009. Lively Wiki a
Development Environment for Creating and Sharing
Active Web Content. In Proceedings of the 5th
International Symposium on Wikis and Open
Collaboration (WikiSym ’09). ACM, New York, NY,

10

http://dx.doi.org/10.1145/2593882.2593896
http://dx.doi.org/10.1145/2642918.2647371
http://dx.doi.org/10.1145/66926.66963
http://dx.doi.org/10.1145/226239.226260
http://dx.doi.org/10.1145/263700.263754
http://dx.doi.org/10.1145/2807442.2807446
http://dx.doi.org/10.3233/978-1-61499-649-1-87
http://dx.doi.org/10.1093/comjnl/27.2.97

USA, Article 9, 10 pages. DOI:
http://dx.doi.org/10.1145/1641309.1641324

11.	 John H. Maloney and Randall B. Smith. 1995. Directness
and Liveness in the Morphic User Interface Construction
Environment. In Proceedings of the 8th Annual ACM
Symposium on User Interface and Software Technology
(UIST ’95). ACM, New York, NY, USA, 21–28. DOI:
http://dx.doi.org/10.1145/215585.215636

12. Jarrod K. Millman and Fernando Pérez. 2014.
Developing open-source scientific practice. Implementing
Reproducible Research 149 (2014).

13. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000.
Past, Present, and Future of User Interface Software
Tools. ACM Trans. Comput.-Hum. Interact. 7, 1 (March
2000), 3–28. DOI:
http://dx.doi.org/10.1145/344949.344959

14.	 David A. Nichols, Pavel Curtis, Michael Dixon, and John
Lamping. 1995. High-latency, Low-bandwidth
Windowing in the Jupiter Collaboration System. In
Proceedings of the 8th Annual ACM Symposium on User
Interface and Software Technology (UIST ’95). ACM,
New York, NY, USA, 111–120. DOI:
http://dx.doi.org/10.1145/215585.215706

15. Dan R. Olsen, Jr. 2007. Evaluating User Interface
Systems Research. In Proceedings of the 20th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’07). ACM, New York, NY, USA,

251–258. DOI:
http://dx.doi.org/10.1145/1294211.1294256

16. Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (jan 2017),
341–350. DOI:
http://dx.doi.org/10.1109/tvcg.2016.2599030

17. Eric Schulte and Dan Davison. 2011. Active Documents
with Org-Mode. Computing in Science & Engineering 13,
3 (may 2011), 66–73. DOI:
http://dx.doi.org/10.1109/mcse.2011.41

18. Antero Taivalsaari, Tommi Mikkonen, Dan Ingalls, and
Krzysztof Palacz. 2008. Web Browser As an Application
Platform: The Lively Kernel Experience. Technical
Report. Mountain View, CA, USA.

19. Lea Verou, Amy X. Zhang, and David R. Karger. 2016.
Mavo: Creating Interactive Data-Driven Web
Applications by Authoring HTML. In Proceedings of the
29th Annual Symposium on User Interface Software and
Technology (UIST ’16). ACM, New York, NY, USA,
483–496. DOI:
http://dx.doi.org/10.1145/2984511.2984551

20. Jeannette M. Wing. 2006. Computational Thinking.
Commun. ACM 49, 3 (March 2006), 33–35. DOI:
http://dx.doi.org/10.1145/1118178.1118215

11

http://dx.doi.org/10.1145/1641309.1641324
http://dx.doi.org/10.1145/215585.215636
http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1145/215585.215706
http://dx.doi.org/10.1145/1294211.1294256
http://dx.doi.org/10.1109/tvcg.2016.2599030
http://dx.doi.org/10.1109/mcse.2011.41
http://dx.doi.org/10.1145/2984511.2984551
http://dx.doi.org/10.1145/1118178.1118215

	Introduction
	Related work
	Collaborative systems and documents
	Scriptable and reprogrammable applications
	Shareable and malleable applications
	Reprogrammability of an environment at runtime
	Web-based code playgrounds & reactive programming

	Interactive notebooks using literate computing
	Interactive notebooks
	Reprogrammable applications using literate computing

	Codestrates Overview
	Use of paragraphs and sections
	Paragraph types and their function
	Combining paragraphs in sections

	Uses of Codestrates
	Interactive notebooks in Codestrates
	How it works
	In real use

	Extending codestrates in Codestrates
	How it works
	In real use

	Developing applications in Codestrates
	How it works
	In real use

	Implementation
	How Webstrates works
	Extensions to Webstrates

	Codestrates
	Bootstrapping and code execution
	Requiring modules and importing external libraries
	Generating user interfaces and structuring paragraphs' data
	Remote collaboration
	Versioning and updating

	Discussion
	Limitations and future work
	Out-of-browser code execution and Jupyter integration
	Version control
	Overhead of development environment
	Textual programming
	Usability

	Systems-oriented evaluation
	Flexibility
	Expressive leverage
	Expressive match

	Conclusion
	Acknowledgements
	References

