
Webstrates: Shareable Dynamic Media
Clemens N. Klokmose1, James R. Eagan2,3,

Siemen Baader1, Wendy Mackay4,5,3 & Michel Beaudouin-Lafon5,3,4

1Aarhus University, 2Télécom ParisTech, 3CNRS, 4INRIA, 5Université Paris-Sud
clemens@cs.au.dk, james.eagan@telecom-paristech.fr, sb@cs.au.dk, {mackay, mbl}@lri.fr

Figure 1: Sample uses of Webstrates: (a) Collaborative document authoring with different editors personalized at run-
time; (b) Multiple devices used to sketch a figure (tablet 1), see it in a print preview (tablet 2), and adjust it in a graphics
editor (laptop). (c) Distributed talk controlled remotely by a speaker with a separate interface for audience participation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
UIST '15, November 08-11, 2015, Charlotte, NC, USA
© 2015 ACM. ISBN 978-1-4503-3779-3/15/11…$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807446

ABSTRACT
We revisit Alan Kay’s early vision of dynamic media that
blurs the distinction between documents and applications.
We introduce shareable dynamic media that are malleable by
users, who may appropriate them in idiosyncratic ways;
shareable among users, who collaborate on multiple aspects
of the media; and distributable across diverse devices and
platforms. We present Webstrates, an environment for
exploring shareable dynamic media. Webstrates augment
web technology with real-time sharing. They turn web pages
into substrates, i.e. software entities that act as applications
or documents depending upon use. We illustrate Webstrates
with two implemented case studies: users collaboratively
author an article with functionally and visually different edi-
tors that they can personalize and extend at run-time; and
they orchestrate its presentation and audience participation
with multiple devices. We demonstrate the simplicity and
generative power of Webstrates with three additional proto-
types and evaluate it from a systems perspective.
Author Keywords
Real-time Collaborative Documents; Dynamic Media; Web.

ACM Classification Keywords
H.5.2 User Interfaces.

INTRODUCTION
In the seventies, Alan Kay introduced the concept of Person-
al Dynamic Media that let a user “mold and channel its pow-
er to his own needs” [15]. He envisioned children with
linked Dynabooks tinkering with a Spacewar game to make
it more challenging by adding a more sophisticated form of
gravity [14]. Two decades later, Mark Weiser envisioned a
future of ubiquitous computing [30], where heterogenous
devices of varying sizes and capabilities interact easily with
each other and technology disappears into the background.
He imagined how colleagues would share a virtual office and
collaborate on a document, seamlessly moving between a
wall-sized display and various ‘tabs’ and ‘pads.’
 Today, the hardware aspects of Kay’s and Weiser’s visions
have been largely realized in smartphones, tablets, laptops,
and large displays. Unfortunately, software lags far behind.
Most software is brittle or hard to change: end-users are lim-
ited to sets of pre-determined lists of preferences, and even
trained developers are at the mercy of application developers
to provide hooks for adding or changing functionality.

Although documents are easy to exchange, they are difficult
to share: Cloud-based file synchronization is prone to con-
flicts; Real-time collaborative editors are limited to a few
application domains and require users to migrate their docu-
ments from their familiar tools to a new environment; Shar-
ing applications is usually limited to bitmap-based screen
sharing. Finally users must learn different environments as
they shift from applications on laptops to apps on phones and
tablets. The web partially mitigates the latter problem, but at
the cost of limited functionality, interaction and extensibility.

Our vision of shareable dynamic media embodies three key
properties:

Malleability: users can appropriate their tools and docu-
ments in personal and idiosyncratic ways;

Shareability: users can collaborate seamlessly on multiple
types of data within a document, using their own person-
alized views and tools; and
Distributability: tools and documents can move easily
across different devices and platforms.

In this paper we present the concept of shareable dynamic
media, an extension of Kay’s dynamic media that supports
“true” sharing and that challenges the traditional model of
applications and documents, and we introduce Webstrates,
which uses conceptually simple but powerful changes to the
web infrastructure to implement these ideas and demonstrate
their potential. We begin with a brief description of the con-
cepts of shareable dynamic media and substrates followed by
an introduction to Webstrates. We compare Webstrates to
related work and demonstrate both its power and simplicity
through two case studies and three examples, including the
collaborative authorship of this paper. We describe the imple-
mentation and evaluation of Webstrates and discuss both the
limitations and potential of this approach.

THE WEB AS SHAREABLE DYNAMIC MEDIA
We define shareable dynamic media as collections of infor-
mation substrates (or substrates for short). Substrates are
software artifacts that embody content, computation and
interaction, effectively blurring the distinction between docu-
ments and applications. Substrates can evolve over time and
shift roles, acting as what are traditionally considered docu-
ments in one context and applications in another, or a mix of
the two. Substrates may be composed in various ways, e.g.,
one substrate can give meaning and structure to another. For
example, a bar-chart substrate can define how to visualize a
statistical data substrate.
 To create a malleable substrate that blurs the distinction
between development and use, as in Kay’s vision of children
tinkering with their game together, we also need substrates to
be truly shareable and to support changes to their content,
computation and interaction elements at run-time. Dynamic
shareable media therefore require support for:

representation of various content types, including text,
images, diagrams, video, and sound;
real-time sharing of content across a variety of devices;
persistent storage of content as it changes;
embedded computation within the substrate itself to cre-
ate and manipulate content; and
on-the-fly recombination of content and computation.

In order to experiment with the concept of shareable sub-
strates, we needed to create a prototype that is both suffi-
ciently rich yet simple to develop, and easy to deploy on var-
ious devices. The web offers an appealing platform. Web
pages are globally addressable with URLs, and can represent
rich content that mixes text, images, etc. in a platform-inde-
pendent way. Content is represented both in an easy-to-store
text format (HTML) and as objects in a standardized Docu-
ment Object Model (DOM). The DOM can be manipulated
at run-time with JavaScript, and changes are immediately
reflected on the display.

Figure 2: Opening the same webstrate in different
browsers. Changes to the DOM are synchronized among

clients and made persistent on the Webstrates server.

Finally, the performance of web browsers and JavaScript
interpreters is constantly improving, with a large number of
web programming tools and libraries.

Unfortunately, the web is not designed to support sharing:
client-side changes made to a web page do not persist, nor
are they synchronized with other clients of the same page.
The web also does not natively support content manipula-
tion: content must be edited with separate applications, or by
embedding ad hoc code within pages and on the server.
We must thus augment the web with fundamental support for
persistence and synchronization of client-side changes to
web pages in order to support malleability, shareability, and
distributability.
 We introduce the Webstrates system (web + substrates), a
prototype of shareable dynamic media that consists of a cus-
tom web server that serves pages, called webstrates, to regu-
lar web browsers. Each webstrate is a shared collaborative
object: changes to the webstrate’s DOM, as well as changes
to its embedded JavaScript code and CSS styles, are trans-
parently made persistent on the server and synchronized with
all clients sharing that webstrate, using Operational Transfor-
mations [8] (Fig.​ 2). By sharing embedded code, behavior
typically associated with application software can also be
(collaboratively) manipulated, opening the way to novel pos-
sibilities for combining content, computation and interaction.
Webstrates can be composed by embedding one webstrate
within another, a process called transclusion [22], that lets
users truly share, rather than copy, content.

We illustrate how Webstrates works with two implemented
case studies. Case study 1 illustrates collaborative paper
authoring by Alice in Europe and Bob in the United States.
Each use personalized editors on the same document. Using
instrumental interaction [2], Alice has created a citation tool
for her editor to add references. She performs remote user
interface extension at run-time, opening Bob’s editor and
adding the citation tool to his toolbar. This is a malleable
interface: Alice modifies Bob’s editor to hide his toolbar and
make it appear when he hovers over it. Bob performs live
tranclusion of figures, sketching a rough figure on a tablet
which updates in real time in the paper editor on his laptop as
Alice corrects it with her vector-graphics editor.

Case study 2 illustrates Alice and Bob preparing and giving a
talk. Alice creates a slideshow in an editor that contains
many of the same tools as her paper editor, including her
citation tool. During their collaborative slideshow design,
Alice shares the slideshow with Bob, and navigates through
it remotely as they discuss it via video chat. Bob adds notes
and she updates the slides immediately. At the conference,
Alice gives a distributed slideshow presentation. Audience
members can see the slides on their personal devices and
pose questions. The session chair selects three questions that
are displayed on Alice’s final slide.

The next sections present related work and the fundamental
concepts of Webstrates. We then return to these two case
studies and describe how each feature is implemented.

RELATED WORK
Prototypes of the Dynabook were written in Smalltalk [10],
whose late binding enables the reprogramming of applica-
tions at run time and blurs the distinction between develop-
ment and use. The current web run-time environment, and
thus Webstrates, is also malleable, although scripts are not
re-interpreted by default and changing them requires reload-
ing the page. Also, the web is a universal distributed environ-
ment, a de facto standard that runs on all platforms. Futher-
more, the advent of web applications is pushing web technol-
ogy towards greater run-time flexibility, making it a viable
alternative to environments such as Smalltalk.

Boxer [3] was an environment for children to learn to pro-
gram by “controlling a reconstructible medium, much like
written language, but with dramatically extended interactive
capabilities.” Text, graphics and code are all embedded in
nested boxes (based on LISP) that can be displayed, modified
and shared by both users and programmers, making it easy to
create dynamic, interactive documents. Boxer’s composition
model is similar to the notion of transclusion in Webstrates.

Hypercard [11] let users create, manipulate and exchange
stacks of interactive multimedia cards. The integrated author-
ing environment allowed both authors and end-users to add
functionality, such as associating functions to buttons or
adding interactive animations, effectively blurring the line
between documents and applications. Webstrates makes it
possible to create editors similar to Hypercard, with two
important additional capabilities: native support for collabo-
ration and tailorability of the authoring environment based
on individual preferences.

More recently, the Lively Kernel [29] offers an integrated
web browser development environment designed for creating
desktop-style applications. It supports run-time software mal-
leability, but is limited to asynchronous wiki-style collabora-
tion [19]. Although web-based, it abstracts away from the
DOM, an approach fundamentally different from Webstrates.

An important limitation of the above systems compared to
Webstrates is the lack of support for real-time collaboration
and multi-device distribution. By contrast, Croquet [28]
which presents a collaborative 3D world that integrates its
user and development environments, is closer in spirit to

Webstrates. The main difference is that we use web-based
technologies and do not use a 3D environment.

Several systems explore distributed user interfaces on the
web. PlayByPlay [31] supports collaborative navigation;
WebSplitter [12] distributes web pages across multiple
devices for collaborative browsing; DireWolf [18] uses a
widget-based design to share distributed pages; and Panelra-
ma [32] divides web pages into panels distributed automati-
cally across devices. These systems focus on distribution, but
lack a general framework for shared content manipulation.

PolyChrome [1] is a web framework for creating collabora-
tive and distributed web visualizations, using input-event
redirection and synchronization to add collaboration support
to single-user web pages. Heinrich et al. [13] take a different
approach for creating multi-user web applications, using
Operational ​Transformation [8] to synchronize the DOM.
Unlike Webstrates, they synchronize only the part of the page
corresponding to the domain object, e.g. an SVG element in
an SVG editor, whereas Webstrates transparently synchro-
nizes the entire DOM of any page.

Google Docs (docs.google.com) supports collaborative docu-
ment editing and sharing of application extensions. However,
it uses a traditional application model where extensions are
limited to the provided document types and their APIs,
whereas Webstrates relies on the general DOM API. Unlike
Webstrates, Google Docs users must use the provided editor
and the user interface is not a shareable object.

Many web frameworks, e.g., AngularJS (angularjs.org) or
React (facebook.github.io/react), adapt the MVC pattern to
web applications. All rely on synchronizing a JavaScript
model with a DOM view. Combining these frameworks with
real-time model synchronization through a shared database,
e.g., Meteor (meteor.com) or Firebase (firebase.com), makes
it possible to create real-time collaborative web applications.
This approach differs fundamentally from Webstrates, which
shares the DOM, that is, the pages themselves, rather than
model objects. While MVC frameworks require application
developers to manage the logic of updating the model when
editing the view and updating the view as the model changes,
Webstrates provides a dynamic medium that is inherently
shared, without any explicit programming.

Edwards et al. [6] offer four approaches for creating infra-
structures that better align user and system needs: surface,
interface, intermediate and deep approaches. Webstrates
focuses on a deep approach, built on a widely available tech-
nology. Webstrates also attempts to resolve the tension
between encapsulating reusable components and supporting
flexibility and tailorability [4] and to create an infrastructure
where tools and documents can interoperate without prior
knowledge, similar to Recombinant Computing [7].

Webstrates is also influenced by Instrumental Interaction [2],
which separates the tools used for editing and manipulating
content from the content itself. Unlike traditional applica-
tions that bundle the tools and the objects they edit, instru-
mental interaction promotes tools that are independent of

content and can be used in different contexts. With Web-
strates, users can actually add and remove instruments at
run-time. Scotty [5] breaks down some of these barriers by
allowing developers to add new instruments to existing
applications. VIGO [16] applies instrumental interaction to
distributed, multi-surface environments, whereas Shared
Substance [9] uses a shared data model to which clients can
dynamically attach behavior, including via instruments. Web-
strates use the DOM as shared data model for both content
and instruments, providing a more unified approach.

WEBSTRATES CONCEPTS
Webstrates rely as much as possible upon existing web tech-
nologies. Individual pages (called webstrates) are served by a
custom web server and accessed using regular URLs. They
can be viewed in any modern desktop or mobile web browser
(some features are only available in some browsers).
 A webstrate is an HTML document that also contains CSS
style sheets and JavaScript code (scripts). A webstrate is dif-
ferent from a regular web page, however. It includes a
Webstrates client that sends any changes made to the DOM
immediately to the Webstrates server, which stores it and
sends it to any other client viewing that same webstrate (Fig.
2). All changes that affect the DOM are therefore synchro-
nized in real time across all clients of the same webstrate.
Changes to a webstrate can result from scripts embedded in
the webstrate itself, from another webstrate that can access it
through transclusion (see below), or from external modifica-
tions, e.g., through web browser developer tools.
 The state of a web page that is not represented in the DOM is
not shared by Webstrates. For example, scripts or style rules
can be added without creating new elements in the DOM.
This provides an escape mechanism to affect the presentation
or behavior of a webstrate locally. Editing input fields also
does not affect the DOM. When this is not the desired behav-
ior, the webstrate must include code that reflects the edited
value in the DOM, e.g., using an attribute of the input field.
 Webstrates use transclusion as the main composition mecha-
nism. Transclusion [22] is the inclusion of all or part of a
document into another document simply by referencing it, in
such a way that any change to the transcluded document is
reflected in the document(s) transcluding it. In Webstrates,
transclusion operates on entire webstrates. For example, a
picture can be transcluded in a paper and in a slide deck. Any
change to the figure is immediately visible in both the paper
and the slide deck (Fig. 3). Transclusion is realized using the
iframe element, which embeds a webpage and the Webstrates
client inside another webpage.

Transclusion becomes particularly powerful when scripts
embedded in the transcluding webstrate modify the content
of the transcluded one and vice versa. For example, to edit an
image, we create an editor webstrate containing the editing
tools. These tools act on the content of the image transcluded
inside the editor (Fig. 1b). Another approach is for the image
webstrate to transclude the tools it needs.

Figure 3: Two webstrates transclude the same figure.
Changes to the figure appear immediately in both.

The advantage here is that the tools can be used on the image
in context, wherever the image is embedded. This example
shows how webstrates can act as documents (the figure), as
applications (the image editor) that “open” the document via
transclusion, or as a mix (the figure with embedded tools).

In order to assess Webstrates, we used it to collaboratively
write the text and format the present paper (Fig. 1a,b) and to
give presentations with active audience participation (Fig.
1c). We present our experiences in the form of two case stud-
ies, illustrated in the accompanying video, to demonstrate
Webstrates’ capabilities. The first presents a scenario show-
ing collaboration between two co-authors who use different,
personalized editors. The second presents a scenario showing
the preparation and orchestration of a slideshow presentation
with participants using multiple heterogeneous devices.

CASE STUDY 1: COLLABORATIVE PAPER AUTHORING
Alice, a graduate student in Europe, is co-authoring a
research paper with Bob, a professor in the United States.
 Personalized editors: Alice creates a new webstrate for the
paper and loads it in her personalized editor webstrate, adds
her notes and shares the document with Bob. She prefers
editing in a plain text style, with a corresponding set of
sophisticated layout and citation tools; whereas Bob uses a
WYSIWYG editor with a print preview style that matches
the final print layout. Alice uses an ACM style viewer web-
strate on her tablet to see a live print preview as she writes.

Instrumental interaction: Alice has created a citation tool
that works with the reference list in her bibliography web-
strate (bibstrate). To add a new reference, she types its key-
word and presses the cite button. If the key is found, the
selected text is replaced with the citation (in the appropriate
format), with a tooltip showing the full reference, which also
appears in the References section.
 Remote run-time interface extension: Bob wants to add his
own references and asks Alice for help. She shares her tool
by opening his editor on her computer and adds it to his
toolbar; Bob can use it immediately.
 Malleable user interfaces: Bob wants his toolbar to disap-
pear except when the mouse hovers over that area. Alice

opens the code-editor webstrate and loads Bob’s editor. She
edits the style sheet of the editor and Bob sees the effect live.
 Live transclusion of figures: Bob uses a stylus to sketch a fig-
ure in the drawing webstrate on his tablet. He adds the figure
to the paper in the editor webstrate, and continues to make
changes, which are updated live on both his laptop and the
tablet. At the same time, Alice uses a more sophisticated vec-
tor graphics editor to clean up the lines.

How it works
Personalized editors: To create the webstrate for the paper,
Alice copies a prototype webstrate consisting of a single
editable element (using the contentEditable DOM attribute)
and calls it AliceBob2015. Alice can now edit it directly and
her changes are automatically saved. Alice types the name of
the new webstrate in her personal editor (Fig. 1a, bottom),
which includes her preferred style and tools, and the paper
webstrate is transcluded into the editor. Bob creates his
WYSIWYG editor by copying the ACM-provided webstrate
and opening the paper webstrate (Fig. 1a, top).
 The same paper is displayed with a different presentation in
each editor. This heterogeneity seems incompatible with the
notion of sharing as described so far: web documents contain
their own style sheet and therefore sharing a document
should also share its style. It is possible, however, to affect
the style of a document in the browser without modifying its
DOM by modifying the document.styleSheets object of the
iframe that transcludes the document. Each editor holds the
style to be applied to its document. When a document is
loaded, the editor applies that style to the document's
stylesheets object. Thus, the paper webstrate’s style in the
local browser context is changed without altering the DOM.
The style applied to the document is itself in a separate web-
strate that is transcluded by the editor, allowing, e.g., Alice to
use the ACM style on her tablet.

In summary, the use of transclusion supports personalized
editors while the injection of CSS rules supports different
presentations of the same webstrate.

Instrumental interaction: We implement tools using the prin-
ciples of instrumental interaction [2]. Each tool (or instru-
ment) can operate on domain objects with certain well-
defined properties. Instruments are not confined to the
encompassing application, as in current systems. They are
independent objects that can be moved, copied and shared. In
Webstrates, the logic of each instrument resides in its own
webstrate, which can therefore be shared using transclusion.
For clarity, we refer to a webstrate that contains instruments
as an editor. Editors typically contain a toolbar, i.e. an
extensible panel that holds the instruments, and a document
that can be edited by the instruments, which is usually a web-
strate transcluded by the editor. Alice’s editor features instru-
ments for adding citations and comments, for tracking
changes, and for applying styles.

An instrument webstrate contains parts that are shared by all
editor webstrates that transclude it: the JavaScript code of its
behavior and the HTML and CSS of its UI.

Figure 4: Composition of Alice’s editor. The instantiation
element of the toolbar and the citation tool are shown

with the hidden webstrates they transclude.

An instrument also often needs state that belongs only to the
hosting editor, e.g., the text color for an instrument that
inserts comments or a toggle button for enabling and dis-
abling change tracking. To add an instrument to an editor, we
add both an instantiation element that contains these
instance-specific elements and the transclusion of the instru-
ment webstrate to a hidden iframe. When an instrument
loads, it looks up its instantiation element in the parent web-
strate and performs any necessary initialization, such as
installing button listeners. Navigating to the instrument web-
strate itself can provide documentation and a way to create
an instantiation element.
 The toolbar is itself an instrument that manages other instru-
ments. Its instantiation element is the panel, which trans-
cludes an instrument for adding and removing instruments
(Fig. 4). The “+” button at the bottom of the toolbar opens a
dialog for adding instruments; right-clicking on a tool opens
a menu with a command to remove it.

The citation instrument (Fig. 4) includes an instantiation ele-
ment that contains a hidden transcluded bibliography web-
strate, or bibstrate, a button to open the bibstrate in a new
window, and a button to insert a citation. Clicking the latter
causes the citation instrument to search the bibstrate for a
citation key matching the selected text and the document for
an element with a references class. If not already present, it
adds the reference to the references list. The citation instru-
ment replaces the selected text with the proper citation, for-
matted according to the editor’s style, e.g. “(Goodman,
1993)” in Alice’s editor and “[11]” in Bob’s.

The bibstrate is a list of citations in a structured DOM for-
mat. A separate instrument transforms BibTeX into this for-
mat to facilitate copy-paste from digital libraries.

In summary, instruments provide a flexible way to create and
customize editors by decoupling documents from the tools
used to edit them. Webstrates facilitate the creation and shar-
ing of instruments, and their integration into editors.

Remote run-time interface extension: To share an instrument,
one has to copy its serialized instantiation element and paste
it in the target toolbar. When right-clicking a tool, the toolbar
shows a menu with a command to show the HTML code of
the instantiation element of that tool. Alice copies this code,
clicks the “+” instrument in the toolbar of Bob’s editor and
pastes the code there. The toolbar instrument adds this code
to the DOM and the scripts in the transcluded instrument are
executed, making the citation instrument functional. Note
that when Alice shares her citation instrument with Bob, his
instrument will also share the same bibstrate as hers.
 Automatic persistence and synchronization of webstrates,
combined with the composition model of transclusion,
enables functionality to be dynamically added and removed
as simply as adding and removing content. These changes
can also be made remotely, or by sending the HTML of the
instantiation element over email, as in, e.g., Buttons [26].

Malleable user interfaces: To modify Bob’s editor, Alice
loads it into her code editor. The code editor transcludes the
source webstrate in a hidden element, then populates a menu
with the webstrate’s scripts and stylesheets. Alice opens the
stylesheet from Bob’s editor and edits it to hide the toolbar
by default and show it with the :hover selector. She then
adds an animation attribute to make the toolbar fade in and
out. Since stylesheets are automatically reintepreted when
changed, Bob can see the results of Alice’s edits live. How-
ever, changes to scripts take effect only when a page reloads.

Such run-time collaborative tinkering is a key feature of mal-
leable software and shareable dynamic media. It uses the
same basic mechanisms as the manipulation of content, blur-
ring the distinction between code and content, applications
and documents, and development and use.

Live transclusion of figures: The drawing webstrate used by
Bob transcludes a blank webstrate and lets Bob draw strokes
(using Ploma: plomaproject.tumblr.com), which are turned
into image elements in the figure webstrate. Bob uses an add
figure instrument to transclude the figure in the paper and add
an editable caption element. Alice’s vector editor adds SVG
elements to this webstrate, while Bob’s drawing editor adds
bitmap image elements. By compositing webstrates through
transclusion, the figure updates live in the paper as multiple
users edit it with different editors (Fig. 1b).
Summary
Webstrates offer a unified medium that blurs the distinction
between content, computation and interaction. Alice and Bob
interact with the same document via functionally and visual-
ly different webstrate editors. The same document (bib-
strates) serves as both a document (collection of references)
and a tool for managing those references. Leveraging the
principles of transclusion and instrumental interaction, Alice
and Bob can modify functionality at run-time, often without

explicit programming. They can also incorporate more
advanced programming into remote webstrates, live.
CASE STUDY 2: PREPARING AND GIVING A TALK
Alice and Bob must design the slides and create an interac-
tive presentation with audience participation, controlled by
the session chair.
 Collaborative slideshow design: Alice opens a new
slideshow webstrate with special tools for controlling slides.
She wants to include several references, so she also adds her
citation tool, as well as an annotation tool to add notes to
each slide. She transcludes figures and graphs from the origi-
nal paper and adds specific references. She sends the
slideshow link to Bob and walks him through it using video
chat. Alice navigates through the slides; Bob adds comments
which Alice incorporates immediately.
 Distributed slideshow presentation: At the conference, Alice
meets Chuck, the session chair. He explains that audience
members will see live copies of her slides on their devices,
and be able to post questions during the talk. At the end,
Chuck will select three that will appear in a webstrate in
Alice’s final slide. The session chair webstrate on Chuck’s
tablet lets him select the current presentation, see audience
questions, and select those Alice should answer. During her
presentation, Alice uses her tablet with her preferred presen-
tation interface, which displays her notes and lets her control
navigation. At the end of the talk, the questions selected by
Chuck appear on her last slide, and she answers them.
How it works
Collaborative slideshow design: The slideshow editor is sim-
ilar to the paper editor, except that it includes a different set
of instruments (Fig. 5a). We use the Reveal presentation
framework (lab.hakim.se/reveal-js) to represent the
slideshow in HTML and CSS. Alice’s citation instrument
works, unmodified, as long as she includes reference sections
at the end of the slideshow or on each slide. Figures can be
transcluded into slides exactly as in the paper. Notes are
added to slides as hidden elements. An instrument in the edi-
tor lets users view and edit the notes in a text area.

The Reveal framework uses the CSS class present to specify
which slide is being shown. Since this class is added and
removed from the DOM elements representing the root of
each slide, any user viewing the slideshow webstrate will
view the same slide, as well as the slide animations (which
are implemented in CSS inlined in the slides) when changing
the current slide. This is how Alice controls the presentation
when showing it to Bob. The video chat between Alice and
Bob is itself a webstrate that uses WebRTC. We use a
WebRTC video chat service (vline.com) that can easily be
embedded in a webstrate dedicated to Alice and Bob’s chats.
 Different types of content, such as papers and slides, usually
require radically different editors and copying and pasting
content. With Webstrates they are represented in the same
medium and can share content as well as instruments. Web-
strates also work with popular web frameworks and
advanced features such as the recent WebRTC protocols.

Figure 5: (a) Alice’s presenter view, (b) Audience view, (c)
Session chair view, and (d) Architecture of these three

linked presentation webstrates. Ovals indicate webstrates
and arrows indicate transclusion.

Distributed slideshow presentation: The projector view (Fig.
1c) is a simple container webstrate that transcludes a
slideshow. The audience view (Fig. 5b & 1c) transcludes the
slideshow container together with a container for a questions
webstrate. The questions webstrate contains a form for sub-
mitting questions. Questions added to the webstrate are visi-
ble to the rest of the audience and the session chair. The
chair’s view transcludes the slideshow and the question con-
tainers together with a webstrate where the chair can
copy/paste questions and edit them (Fig. 5c). The chair’s
edited questions are transcluded on Alice’s last slide. The
chair can control which webstrates are loaded in the contain-
ers using a form. Figure 5d gives an overview of the archi-
tecture.

To control the presentation, Alice uses a webstrate that trans-
cludes her slideshow, with a style that provides navigation
tools and makes her presenter’s notes visible. We have also
implemented the automatic transclusion of the session web-
strate using WiFi proximity detection [17] so that the audi-
ence can use a single webstrate throughout the conference
and see the slides and questions for the session they are
attending. The webstrate polls a location service and maps
the current location and time to a session webstrate, which is
automatically loaded into the participant’s container. Here,
we take advantage of the ability to change the address of the
iframe transcluding the session webstrate without changing
the DOM, so that all participants can share the same proximi-
ty detection webstrate.
 Webstrates can be used to orchestrate a complex distributed
and collaborative session in a simple way, by combining
existing webstrates and creating containers and simple tools
to configure the session. Webstrates can also seamlessly inte-
grate ubicomp services such as location information.
Summary
Webstrates offer a medium that breaks down the barriers
between documents and applications and facilitates tool

reuse. The inherent sharing mechanism allows users to
orchestrate complex collaborative and distributed situations
involving multiple users with different roles and devices.

IMPLEMENTATION
Webstrates consists of a server and a client. The server is
based on Node.js and consists of ~300 SLOC of CoffeeScript
(excluding third-party libraries). The server injects the client
into the web browser. It consists of ~800 SLOC of Coffee-
Script (excluding third-party libraries). The code is available
at http://www.webstrates.net.

Automatic DOM synchronization
To synchronize the DOM between clients, we use ShareJS
(sharejs.org), an open source library implementing Opera-
tional Transformation [8] based on a Jupiter client/server
[23]. ShareJS supports plain text and JSON. We transform
HTML documents (with inlined CSS and JavaScript) into
JsonML (jsonml.org). Our server stores the documents along
with their operation log in a MongoDB database.
 When a browser fetches a webstrate, e.g. http://web-
strates.net/my_webstrate, the server sends the Webstrates
client and the id of the document (‘my_webstrate’). The
client then retrieves the JsonML document with the given id
(‘my_webstrate’) from the server, converts it to HTML, and
loads it into the browser window. (Note that the Webstrates
client is still loaded in the browser window.)
 The client uses the MutationObserver DOM API to observe
changes to the local DOM including inlined scripts and
styles. When a mutation is observed, the mutation is translat-
ed into a JSON operation on the ShareJS document and sent
to the server, which records it and propagates it to the other
clients. Conversely, when a JSON operation is received from
the server, it is translated into a manipulation of the DOM.
Since the mutations generated by a MutationObserver arrive
asynchronously with only relative location information, e.g.,
a node was added to a parent next to this immediate previous
sibling, we maintain an intermediate representation of the
DOM in order to compute absolute paths when generating
JSON operations for each individual mutation.
Webstrates API
The Webstrates client adds two new events to the standard
DOM API: it fires an event on a window when it has finished
loading the content of a webstrate, and when the content of a
text node in the DOM is replaced. In the latter case, the event
contains the difference with its previous value. Apart from
these two events, programming with Webstrates relies exclu-
sively on the browser’s DOM API. Synchronization between
clients and the persistence of the state are completely trans-
parent. In particular, most existing libraries used by web
developers can be used to create and manipulate rich content.
 New webstrates are created either by sending a request to the
server with an id that does not exist, or by copying an exist-
ing webstrate: The root URL of the server (e.g. http://web-
strates.net/) is a webstrate that lets users create a copy from a
list of common webstrates or from a named webstrate.

Authentication
Users authenticate with the server using external providers,
e.g. Github or Twitter. The server stores the access rights for
a webstrate in an attribute of its html tag. A more refined
authentication and access rights model is left for future work.

Transclusion
Transclusion uses an iframe element, which is a standard
HTML element designed to embed a page within the sur-
rounding page. By loading a webstrate in the iframe element,
we achieve exactly the effects of transclusion: changes to the
transcluded webstrate that are made, e.g., in another client,
propagate and show up immediately (Fig. 3). For security
reasons, the browser insulates the content of iframes from
their surrounding page. However, when both pages are
served by the same server, each can access and modify the
other, opening the way to the types of composition men-
tioned earlier and illustrated in the examples below.

Performance
Performance is excellent, even over transatlantic distances,
due to the use of Websockets and asynchronous handling and
storage of operations on the server. This article was written
entirely with Webstrates and the co-authors always experi-
enced interactive response times. Each webstrate loaded into
the browser has its own instance of the client and socket con-
nection to the server, which could be optimized. Also, the
server keeps the entire log of operations on each webstrate,
which could be culled. To ensure fast loading, the server
stores a snapshot of a recent version of each webstrate.
 The most computationally intensive parts of the Webstrates
client are computing the absolute path of an observed muta-
tion and the difference between the old and new values of a
text node. With our intermediate representation of the DOM,
we can compute the absolute path of a mutation in a time
proportional to the height of the DOM tree. To compute the
difference between two text nodes we use a third party
library based on Myers’ algorithm [21] with a complexity of
O(ND), where N is the combined length of the two strings
and D is the size of their minimum edit script (diff).
DISCUSSION
Working with webstrates
Creating webstrates is very similar to traditional web devel-
opment with HTML, CSS, JavaScript and popular libraries
such as jQuery. It is very different, however, from develop-
ing web applications, which require frameworks that use
complex logic to render content from a back-end database
into HTML and interpret user input into database queries.
With Webstrates, the medium is the model: any change to the
content of a page is shared among clients and stored in the
server. This requires some adaptation, and a different set of
design patterns than for traditional, MVC-based applications.
 In our own experience, creating webstrates is surprisingly
easy. The ability to work directly in the browser, using devel-
oper tools to make changes and seeing those changes syn-
chronized immediately gives the sensation of working within
a live medium. In some cases however, achieving the desired

effect is more complicated. This is usually the case when try-
ing to violate a fundamental tenet of Webstrates: a webstrate
shares the DOM, the whole DOM and nothing but the DOM.
Problems typically come from either wanting to share infor-
mation that is not represented in the DOM or not wanting to
share information that is in the DOM.
 The first problem can be addressed by simply adding the
information to the DOM. For example, to share the content
of a text field, we use two listeners to synchronize the value
of the field with an attribute that we add to the field. Since
attribute values are synchronized by Webstrates, we effec-
tively share the value of the field in real time.
 The second problem, not sharing information already in the
DOM, is more complex, since we cannot simply remove that
information. A webstrate is identical for all users, and cannot
directly contain different tools for different users. The pattern
we use most often is a container webstrate that contains the
custom elements (here, the tools) and also transcludes the
webstrate to be customized (here, the content). This way, dif-
ferent users can use different containers, tailored to their
needs. However, this solution does not cover cases where
custom elements must be embedded directly in the docu-
ment, such as personal comments on the text. In such cases,
we do include the content in the DOM, and use local style
rules injected in the document to hide unwanted content.
 Another important design pattern is the use of instruments to
separate content from the tools used to edit it. As explained
in the first case study, we use an instantiation element that
transcludes the instrument. To ensure that instruments work
in a variety of contexts, we query the DOM to find the target
of the instrument. This often involves crossing iframe bound-
aries to reach a container or a transcluded webstrate. This has
proven to be a source of difficulty, especially when using
existing web libraries, because the scripts must be evaluated
in the target iframe. For example, while Reveal.js worked out
of the box for the slideshow, CodeMirror (codemirror.net),
used for our code editor, does not play well with our persis-
tent DOM. We therefore run it in a separate iframe and syn-
chronize its state explicitly. While this loses some of the ben-
efits of Webstrates, it demonstrates that it is possible to inte-
grate otherwise incompatible third-party libraries.

The last pattern we use is a controller webstrate, reminiscent
of MVC, where the controller transcludes a “view” webstrate
that it updates as needed, e.g. by monitoring an external
source as in the tangible clock example below. However,
“view” webstrates are full-fledged webstrates and can be
shared as any other webstrate.
Simplicity and generative power
We present three working prototypes that illustrate the sim-
plicity and generative power of Webstrates, beyond docu-
ment editing and presentation. Each shows how to reframe
an existing system in terms of shareable dynamic media and
how our approach suggests ideas for novel capabilities.

Shared window manager
We explored how webstrates could replace an entire desktop

by implementing a simple window manager webstrate where
each window transcludes a webstrate or a regular web page.
The user can move, resize and scale each window, and inter-
act with its content as usual. An interesting added benefit is
that sharing the window manager webstrate provides a sim-
ple and efficient screen-sharing solution.
 We ran this window manager on an interactive wall-sized
display with 75 LCD tiles powered by a cluster of 10 com-
puters (Fig. 6a). We created a different container webstrate
for each computer that transcludes the window manager
webstrates, showing only the part corresponding to the tiles it
controls. Performance is excellent, as seen in the video.

Communication appliance
MarkerClock [25] displays the activity of several remote
users over time (Fig. 6b). We recreated it with a controller
webstrate, which transcludes a clock webstrate that displays
the clock face, and an activity webstrate, which captures user
activity. The controller updates the hands of the clock, moni-
tors user activity by analyzing the video feed from a camera,
and adds marks to the activity webstrate.

Tangible world clock
We designed a tangible LEGO world clock controlled by a
LEGO Mindstorm EV3 and an iPod Touch (Fig. 6c). The
user sets the time by turning the hands of the LEGO clock
and changes the timezone by tapping the iPod display. The
iPod runs a controller webstrate that transcludes a clock web-
strate. The controller communicates with the EV3 brick over
a websocket. When it receives events from the brick, it
updates the time on the clock webstrate. When the timezone
is changed, it sends the new time to the brick. Opening the
clock webstrate on another device creates a remote control
and display for the physical clock.

Figure 6: (a) Window manager webstrate running on a
10-computer wall-sized display. (b) Marker Clock activi-

ty tracker. (c) Tangible world-clock.

Systems-oriented evaluation criteria
A user interface software tool should have a low threshold
—be easy to learn—and a high ceiling—support advanced
users [20]. Or, as Alan Kay put it, “simple things should be
simple, complex things should be possible.” The threshold
for learning Webstrates is limited to basic knowledge of
HTML, CSS and JavaScript: there is no new API to learn,
and sharing is free. Conversely, the ceiling of Webstrates is
that of the web, with the ability to distribute and synchronize
content in real time. However, what is rendered outside the
DOM, e.g., on the HTML5 canvas or with WebGL, or stored
in a JavaScript model or on a server is not synchronized and
requires ad hoc solutions. The case studies and examples
above demonstrate that complex scenarios involving multiple
users and devices can be implemented relatively simply.

In order to assess whether “simple things are simple,” we
implemented the to-do list benchmark from todomvc.com
with Webstrates. This is a simple to-do list where users can
add, remove, check and filter to-do items. Our implementa-
tion, which uses jQuery, is only 53 logical lines of code
(lloc), compared to 110 lloc with Meteor and 90 lloc with
Firebase. The code is not only short, but also simple: it is the
same code that one would write to create a single-user to-do
list without persistence. The only exception is an attribute on
a checkbox element and a mutation observer used to syn-
chronize its run-time state, which is not stored in the DOM.

For our case studies, the size of JavaScript code is 932 lloc
for case study 1 (toolbar: 75 lloc; citation tool: 68 lloc; figure
tool: 68 lloc; sketching tool: 123 lloc; code editor: 184 lloc)
and 123 lloc for case study 2 (slideshow instrument: 83 lloc;
session chair webstrate: 33 lloc). The window manager is
117 lloc, MarkerClock 44 lloc and the LEGO clock 148 lloc.
 Olsen [24] introduced several values of a good user interface
toolkit, including reduced viscosity through flexibility,
expressive leverage and expressive match. Flexibility is the
ability to make rapid changes that can quickly be evaluated
by users. Webstrates are highly flexible: a developer can tin-
ker with a user’s interface remotely at run-time with immedi-
ate response or, at worst, after reloading the page. Expressive
leverage is “where the designer can accomplish more by
expressing less.” Webstrates achieves expressive leverage by
making real-time sharing a fundamental feature of the medi-
um rather than requiring specialized frameworks as in cur-
rent web applications. For example, the list of questions in
the slideshow case study is implemented without having to
think about synchronization, database back-end, etc.
 Expressive match is “an estimate of how close the means for
expressing design choices are to the problem being solved.”
By providing an environment where both use and develop-
ment take place in the browser, Webstrates makes develop-
ment more direct. Because sharing applies to the DOM itself,
rather than to invisible model objects, the environment is
more transparent and the solutions are expressed in terms of
what is shared by whom. Also, Webstrates are compatible
with many web frameworks, which helps increase expressive
match for the issues that they do not address. Finally, Web-

strates provide high expressive match to the users them-
selves by letting them configure their environment to suit
their needs. For example, one user may prefer a visual color
wheel to pick a color while another prefers entering a hex
string. With Webstrates, both can work on the same docu-
ment with their own tools and are not limited to those bun-
dled with traditional applications.

Limitations
Although Webstrates is fully functional, the current imple-
mentation has some technical limitations and lacks certain
features. First, the Operational Transformation algorithm
does not recognize move operations, which are interpreted as
delete and insert. This causes problems when a user is edit-
ing a section that is moved by another user. We are
considering other algorithms, such as CRDTs [27]. Second,
all communication is unencrypted and our authentication and
access rights are overly simple. Third, while performance has
been satisfactory so far, the system could be optimized. In
particular, all webstrates in a page should share the same
client and websocket connection. We are also considering a
peer-to-peer architecture so as to be less dependent on a cen-
tral server. Finally, a document manager webstrate would
help users organize their webstrates, and presence indicators
would improve awareness of other users.
CONCLUSIONS AND FUTURE WORK
Webstrates offer a novel approach for creating shareable
dynamic media that blur the distinction between documents
and applications. Our vision requires software to be mal-
leable by users, so they can appropriate documents and tools
to meet individual needs; shareable among users, so they can
collaborate on multiple aspects of the media; and distrib-
utable across heterogeneous devices and platforms. We build
upon earlier visions of the Dynabook and ubiquitous comput-
ing, but with today’s technology ecosystem, and describe
how relatively minor changes to current web technology can
bring our vision closer to reality.
 We introduce Webstrates, an exploratory platform that turns
web pages into webstrates that embody content, computation
and interaction. Webstrates act as documents, tools or appli-
cations, depending upon context of use. They are shareable
among users and changes are automatically synchronized
among clients and made persistent. We support live composi-
tion of diverse media into a single, shared document, using
transclusion. Users can create and modify their own tools at
run-time, using instrumental interaction. As a proof of con-
cept, the co-authors wrote this paper using personalized edi-
tor webstrates matching their individual work styles and
technical skills. We demonstrated the power and simplicity
of Webstrates by creating a shared window manager, a com-
munication appliance, and a tangible interactive clock.
Future work will explore how Webstrates can support diverse
computer-mediated activities, especially to support creative
and scientific activities.
ACKNOWLEDGEMENTS
This research was partially supported by The Carlsberg
Foundation, Center for Participatory IT at Aarhus University,

the Danish Strategic Research Council (#1311-00001B), and
European Research Council grant CREATIV (#321135).

REFERENCES
1. Badam, S.K. and Elmqvist, N. (2014) PolyChrome: A

Cross-Device Framework for Collaborative Web Visual-
ization. In Proc. Interactive Tabletops and Surfaces (ITS
´14). ACM. 109–118

2. Beaudouin-Lafon, M. (2000) Instrumental interaction: an
interaction model for designing post-WIMP user inter-
faces. In Proc. Human Factors in Computing Systems
(CHI´00). ACM. 446–453

3. diSessa, A.A. and Abelson, H. (1986) Boxer: A Recon-
structible Computational Medium. In Commun. ACM.
29(9). 859–868

4. Dourish, P. and Edwards, W.K. (2000) A Tale of Two
Toolkits: Relating Infrastructure and Use in Flexible
CSCW Toolkits. In Jal. CSCW. 9. Springer. 33–51

5. Eagan, J.R., Beaudouin-Lafon, M. and Mackay, W. (2011)
Cracking the cocoa nut: user interface programming at
runtime. In Proc. User Interface Software and Technology
(UIST´11). ACM. 225–234

6. Edwards, W.K., Newman, M.W. and Poole, E.S. (2010)
The Infrastructure Problem in HCI. In Proc. Human Fac-
tors in Computing Systems (CHI´10). ACM. 423–432

7. Edwards, W.K., Newman, M.W., Sedivy, J.Z. and Smith,
T.F. (2009) Experiences with Recombinant Computing:
Exploring Ad Hoc Interoperability in Evolving Digital
Networks. In TOCHI. 16(1). ACM. 3:1–3:44

8. Ellis, C.A. and Gibbs, S.J. (1989) Concurrency control in
groupware systems. In SIGMOD. 18(2). ACM. 399–407

9. Gjerlufsen, T., Klokmose, C.N., Eagan, J., Pillias, C. and
Beaudouin-Lafon, M. (2011) Shared substance: develop-
ing flexible multi-surface applications. In Proc. Human
Factors in Computing Systems (CHI´11). ACM. 3383–
3392

10. Goldberg, A. and Robson, D. (1983) Smalltalk-80: the
language and its implementation. Addison-Wesley.

11. Goodman, D. (1993) The complete HyperCard 2.2 hand-
book. Bantam books.

12. Han, R., Perret, V. and Naghshineh, M. (2000) WebSplit-
ter: a unified XML framework for multi-device collabora-
tive Web browsing. In Proc. Computer Supported Coop-
erative Work (CSCW´00). ACM. 221–230

13. Heinrich, M., Lehmann, F., Springer, T. and Gaedke, M.
(2012) Exploiting single-user web applications for shared
editing: a generic transformation approach. In Proc. World
Wide Web (WWW´12). ACM. 1057–1066

14. Kay, A. (1972) A personal computer for children of all
ages. In Proc. ACM Annual Conference V1.1. ACM.

15. Kay, A. and Goldberg, A. (1977) Personal dynamic
media. In Computer. 10(3). IEEE. 31–41

16. Klokmose, C.N. and Beaudouin-Lafon, M. (2009) VIGO:

instrumental interaction in multi-surface environments. In
Proc. Human Factors in Computing Systems (CHI´09).
ACM. 869–878

17. Klokmose, C.N., Korn, M. and Blunck, H. (2014) WiFi
proximity detection in mobile web applications. In Proc.
Engineering Interactive Computing Systems (EICS´14).
ACM. 123–128

18. Kovachev, D., Renzel, D., Nicolaescu, P. and Klamma, R.
(2013) Direwolf-distributing and migrating user interfaces
for widget-based web applications. In Web Engineering.
Springer. 99–113

19. Krahn, R., Ingalls, D., Hirschfeld, R., Lincke, J. and
Palacz, K. (2009) Lively Wiki a development environ-
ment for creating and sharing active web content. In Proc.
Wikis and Open Collaboration. ACM. 9

20. Myers, B., Hudson, S.E. and Pausch, R. (2000) Past,
present, and future of user interface software tools. In
ACM TOCHI. 7(1). ACM. 3–28

21. Myers, E.W. (1986) An O(ND) difference algorithm and
its variations. In Algorithmica. 1(1-4). Springer. 251–266

22. Nelson, T.H. (1995) The Heart of Connection: Hyperme-
dia Unified by Transclusion. In Commun. ACM. 38(8).
ACM. 31–33

23. Nichols, D.A., Curtis, P., Dixon, M. and Lamping, J.
(1995) High-latency, Low-bandwidth Windowing in the
Jupiter Collaboration System. In Proc. User Interface
Software and Technology (UIST´95). ACM. 111–120

24. Olsen Jr, D.R. (2007) Evaluating user interface systems
research. In Proc. User Interface Software and Technolo-
gy (UIST´07). ACM. 251–258

25. Riche, Y. and Mackay, W. (2010) PeerCare: supporting
awareness of rhythms and routines for better aging in
place. In Proc. Computer Supported Cooperative Work
(CSCW´10). 19(1). Springer. 73–104

26. Robertson, G.G., Henderson Jr, D.A. and Card, S.K.
(1991) Buttons as first class objects on an X desktop. In
Proc. User Interface Software and Technology (UIST´91).
ACM. 35–44

27. Shapiro, M., Preguiça, N., Baquero, C. and Zawirski, M.
(2011) Conflict-free Replicated Data Types. In Proc. Sta-
bilization, Safety, and Security of Distributed Systems
(SSS´11). Springer-Verlag. 386–400

28. Smith, D.A., Kay, A., Raab, A. and Reed, D.P. (2003)
Croquet-a collaboration system architecture. In Proc. Cre-
ating, Connecting and Collaborating Through Computing
(C5´03). IEEE. 2–9

29. Taivalsaari, A., Mikkonen, T., Ingalls, D. and Palacz, K.
(2008) Web Browser As an Application Platform: The
Lively Kernel Experience. In SMLI TR-2008-175. Sun
Microsystems, Inc.

30. Weiser, M. (1991) The computer for the 21st century. In
Scientific American. 265(3). Nature Publishing. 94–104

31. Wiltse, H. and Nichols, J. (2009) PlayByPlay: collabora-
tive web browsing for desktop and mobile devices. In
Proc. Human Factors in Computing Systems (CHI´09).
ACM. 1781–1790

32. Yang, J. and Wigdor, D. (2014) Panelrama: enabling easy
specification of cross-device web applications. In Proc.
Human Factors in Computing Systems (CHI´14). ACM.
2783–2792

